Functional BOD-Ad-Cmyc@BSA complex nanosensor for Cu(II) and the detection of live E. coli

被引:2
作者
Akrofi R. [1 ]
Zhang P.-L. [1 ]
Chen Q.-Y. [1 ]
机构
[1] School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Jingkou District, Xuefu Road, Zhenjiang
基金
中国国家自然科学基金;
关键词
BSA; Cu[!sup]2+[!/sup; DNA assembly; Escherichia coli; Fluorescent method;
D O I
10.1016/j.saa.2020.118483
中图分类号
学科分类号
摘要
Escherichia coli (E. coli) is abundantly present in nature. It is generally harmless to humans but some strains have been deemed very dangerous. Therefore, as an indicator of hygienic testing, the detection of E. coli is essential. In this work, a fluorescent assembly was synthesized and characterized by spectroscopic methods. It was found that the amantadine (Ad) conjugated dye (BOD-Ad) intercalated into Cmyc G4 (aptamer) forming a non-emission assembly (BOD-Ad-Cmyc), which could be lighted-up by BSA due to the formation of fluorescence nanoparticle BOD-Ad-Cmyc@BSA. Further, BOD-Ad-Cmyc@BSA can selectively bind Cu2+ forming non-emission species BOD-Ad-Cmyc@BSA-Cu2+. E. coli can turn-on the emission of BOD-Ad-Cmyc@BSA-Cu2+ system due to the copper accumulation or reduction by E. coli. Therefore, a fluorescence method for the determination of E. coli was built. The detection limit of BOD-Ad-Cmyc@BSA-Cu2+ of E. coli is 6.3 CFU/mL. Thus, this BOD-Ad-Cmyc@BSA-Cu2+ fluorescent assembly can be used for the detection of live E. coli in the environment. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 29 条
[1]  
Luisa A., Lopes K., Cardoso J., Roberta F., Cleto C., Claudia A., Silva G., Isabel M., Ivo N., Zanchin T., Jose M., Aurelio M., Development of a magnetic separation method to capture sepsis associated bacteria in blood, J. Microbiol. Methods, 128, pp. 96-101, (2016)
[2]  
Liebregts T., Adam B., Bredack C., Roth A., Heinzel S., Lester S., Downie-doyle S., Smith E., Drew P., Talley N.J., Holtmann G., Immun activation in patients with irritable bowel syndrome, Gastroenterol, 132, pp. 913-920, (2007)
[3]  
Szczerba-Turek A., Socha P., Bancerz-Kisiel A., Platt-Samoraj A., Lipczynska-Ilczuk K., Siemionek J., Konczyk K., Terech-Majewska E., Szweda W., Pathogenic potential to humans of Shiga toxin-producing Escherichia coli isolated from wild boars in Poland, Int. J. Food Microbiol., 300, pp. 8-13, (2019)
[4]  
Fulham M., Power M., Gray R., Comparative ecology of Escherichia coli in endangered Australian sea lion (Neophoca cinerea) pups, Infect. Genet. Evol., 62, pp. 262-269, (2018)
[5]  
Li J., Li B., Liu M., One-step synthesis of mannose-modified polyethyleneimine copolymer particles as fluorescent probes for the detection of Escherichia coli, Sens. Actuators B Chem., 280, pp. 171-176, (2019)
[6]  
Yang X., Gu C., Qian F., Li Y., Zhang J.Z., Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced raman scattering and optical fibers, Anal. Chem., 83, pp. 5888-5894, (2011)
[7]  
Wang P.X., Pang S.T., Chen J.H., Mclandsborough L., Nugen S.R., Fan M.T., He L.L., Label-free mapping of single bacterial cells using surface-enhanced raman spectroscopy, Analyst, 141, pp. 1356-1362, (2016)
[8]  
Balakrishnan B., Barizuddin S., Wuliji T., El-Dweik M., A rapid and highly specific immunofluorescence method to detect Escherichia coli O157: H7 in infected meat samples, Int. J. Food Microbiol., 231, pp. 54-62, (2016)
[9]  
Leahy S., Lai Y., A cantilever biosensor based on a gap method for detecting E. coli in real time, Sens. Actuators, B Chem., 246, pp. 1011-1016, (2017)
[10]  
Guan Y., Tsao C.Y., Quan D.N., Li Y., Mei L., Zhang J., Zhang B., Liu Y., Bentley W.E., Payne G.F., Wang Q., An immune magnetic nano-assembly for specifically amplifying intercellular quorum sensing signals, Colloids Surf. B Biointerfaces., 172, pp. 197-206, (2018)