Codimension-two bifurcation of motions of an airfoil in incompressible flow

被引:0
|
作者
Liu, Fei [1 ]
Yang, Yiren [1 ]
机构
[1] Dept. of Appl. Mechanics and Eng., Southwest Jiaotong University, Chengdu 610031, China
来源
Zhendong yu Chongji/Journal of Vibration and Shock | 2005年 / 24卷 / 04期
关键词
Bifurcation (mathematics) - Computer simulation - Differential equations - Flutter (aerodynamics) - Incompressible flow - Nonlinear systems - Stability - Stiffness;
D O I
暂无
中图分类号
学科分类号
摘要
Codimension-two bifurcations of an airfoil with non-linear pitching stiffness in incompressible flow are investigated. The nonlinearity of the spring is regarded as cubic pitching stiffness. The motion equations of the airfoil are written as the four dimensional one order differential equations, and the analytic solutions of the critical speed and linear stiffness for codimension-two bifurcation are obtained. The stabilities of the equilibrium points and limit cycles in different regions of two parameter plane are studied. Some numerical integration results are given.
引用
收藏
页码:18 / 19
相关论文
共 50 条
  • [1] Observing a codimension-two heteroclinic bifurcation
    Tokunaga, Ryuji
    Abe, Yasushi
    Matsumoto, Takashi
    CHAOS, 1993, 3 (01) : 63 - 72
  • [2] Discontinuous codimension-two bifurcation in a Vlasov equation
    Yamaguchi, Yoshiyuki Y.
    Barre, Julien
    PHYSICAL REVIEW E, 2023, 107 (05)
  • [3] The codimension-two bifurcation for the recent proposed SD oscillator
    Tian, Ruilan
    Cao, Qingjie
    Yang, Shaopu
    NONLINEAR DYNAMICS, 2010, 59 (1-2) : 19 - 27
  • [4] The codimension-two bifurcation for the recent proposed SD oscillator
    Ruilan Tian
    Qingjie Cao
    Shaopu Yang
    Nonlinear Dynamics, 2010, 59 : 19 - 27
  • [5] BIFURCATION OF A CLASS OF CODIMENSION-TWO NONLINEAR HIGHER ORDER SYSTEM
    脱秋菊
    李学敏
    Annals of Differential Equations, 2003, (03) : 402 - 410
  • [6] Unfolding a codimension-two, discontinuous, Andronov-Hopf bifurcation
    Simpson, D. J. W.
    Meiss, J. D.
    CHAOS, 2008, 18 (03)
  • [7] Codimension-two bifurcation analysis in Hindmarsh-Rose model with two parameters
    Duan, LX
    Lu, QS
    CHINESE PHYSICS LETTERS, 2005, 22 (06) : 1325 - 1328
  • [8] Codimension-two holography
    Alvarez, E
    Conde, J
    Hernández, L
    NUCLEAR PHYSICS B, 2003, 663 (1-2) : 365 - 376
  • [9] Codimension-two bifurcation analysis in two-dimensional Hindmarsh–Rose model
    Xuanliang Liu
    Shenquan Liu
    Nonlinear Dynamics, 2012, 67 : 847 - 857
  • [10] A codimension-two resonant bifurcation from a heteroclinic cycle with complex eigenvalues
    Postlethwaite, Claire M.
    Dawes, Jonathan H. P.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2006, 21 (03): : 313 - 336