Mechanical modulation wave energy harvesting for self-powered marine environment monitoring

被引:0
|
作者
Zou, Hong-Xiang [1 ]
Zhou, Wen-Zhuo [1 ]
Su, Chang-Sheng [1 ]
Guo, Ding-Hua [1 ]
Zhao, Lin-Chuan [2 ]
Gao, Qiu-Hua [2 ]
Wei, Ke-Xiang [1 ]
机构
[1] Hunan Inst Engn, Sch Mech Engn, 88 Fuxing East Rd, Xiangtan 411104, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Wave energy harvesting; Mechanical modulation; Self-powered environmental monitoring; TRIBOELECTRIC NANOGENERATOR; CONVERTER; FUTURE;
D O I
10.1016/j.oceaneng.2024.119683
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Small-scale wave energy harvesting can be used for self-powered marine environmental monitoring, with the advantages of sustainability, convenience, and environmental protection. The low-frequency and strong random fluctuations of ocean wave motion are not conducive to electromechanical conversion. In this paper, we propose a mechanically modulated wave energy harvester embedded with interference-free triboelectric nanogenerators. The mass pendulum oscillates under irregular low-frequency wave excitation, and then the oscillation is mechanically modulated into a unidirectional high-speed rotation of four permanent magnet disks. The elastic parts on both sides of the mass pendulum are functionalized into multi-layered folding triboelectric nanogenerators, which neither increase the volume of the wave energy harvesting system nor affect the operation of the electromagnetic generator. The prototype was manufactured and the experimental results show that the sum of the average power of the prototype is 4.8 W under excitation at a frequency of 3 Hz and a inclination angle of 40 degrees. The 0.47 F capacitor can be charged to 5 V in 80 s by the prototype under the wave excitation generated by push plate, and then used for self-powered marine environmental monitoring (illumination, temperature and pH) and wireless information transmission.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Energy Harvesting from the Animal/Human Body for Self-Powered Electronics
    Dagdeviren, Canan
    Li, Zhou
    Wang, Zhong Lin
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 19, 2017, 19 : 85 - 108
  • [22] Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing
    Li, Xunjia
    Jiang, Chengmei
    Zhao, Fengnian
    Lan, Lingyi
    Yao, Yao
    Yu, Yonghua
    Ping, Jianfeng
    Ying, Yibin
    NANO ENERGY, 2019, 61 : 78 - 85
  • [23] A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking
    Chandrasekhar, Arunkumar
    Vivekananthan, Venkateswaran
    Kim, Sang-Jae
    NANO ENERGY, 2020, 69
  • [24] Piezoelectric energy harvesting for self-powered wearable upper limb applications
    Liu, Yuchi
    Khanbareh, Hamideh
    Halim, Miah Abdul
    Feeney, Andrew
    Zhang, Xiaosheng
    Heidari, Hadi
    Ghannam, Rami
    NANO SELECT, 2021, 2 (08): : 1459 - 1479
  • [25] Innovations in Self-Powered glucose Biosensors: From energy harvesting to Continuous, Non-Invasive monitoring
    Esmaeilian, Ali
    Yazdian, Fatemeh
    Saberi, Alireza
    Hosseini, Ali
    Rahdar, Abbas
    Fathi-karkan, Sonia
    Pandey, Sadanand
    INORGANIC CHEMISTRY COMMUNICATIONS, 2025, 174
  • [26] Self-Powered Smart Vibration Absorber for In Situ Sensing and Energy Harvesting
    Xu, Jiawen
    Wang, Zhenyu
    Nie, Heng-Yong
    Wei, Yen
    Liu, Yu
    ADVANCED INTELLIGENT SYSTEMS, 2024, 6 (07)
  • [27] Advances in Blue Energy Fuels: Harvesting Energy from Ocean for Self-Powered Electrolysis
    Ock, Il Woo
    Yin, Junyi
    Wang, Shaolei
    Zhao, Xun
    Baik, Jeong Min
    Chen, Jun
    ADVANCED ENERGY MATERIALS, 2024,
  • [28] A Self-Powered Synchronous Switch Energy Extraction Circuit for Electromagnetic Energy Harvesting Enhancement
    Xie, Zhiwu
    Teng, Li
    Wang, Haoyu
    Liu, Yu
    Fu, Minfan
    Liang, Junrui
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (08) : 9972 - 9982
  • [29] Vertical Blinds-Inspired Triboelectric Nanogenerator for Wind Energy Harvesting and Self-Powered Wind Speed Monitoring
    Choi, Jong-An
    Jeong, Jingu
    Kang, Mingyu
    Pyo, Soonjae
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (04) : 2534 - 2543
  • [30] A Ring-Type Triboelectric Nanogenerator for Rotational Mechanical Energy Harvesting and Self-Powered Rotational Speed Sensing
    Xin, Yida
    Du, Taili
    Liu, Changhong
    Hu, Zhiyuan
    Sun, Peiting
    Xu, Minyi
    MICROMACHINES, 2022, 13 (04)