Mechanical modulation wave energy harvesting for self-powered marine environment monitoring

被引:0
|
作者
Zou, Hong-Xiang [1 ]
Zhou, Wen-Zhuo [1 ]
Su, Chang-Sheng [1 ]
Guo, Ding-Hua [1 ]
Zhao, Lin-Chuan [2 ]
Gao, Qiu-Hua [2 ]
Wei, Ke-Xiang [1 ]
机构
[1] Hunan Inst Engn, Sch Mech Engn, 88 Fuxing East Rd, Xiangtan 411104, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Wave energy harvesting; Mechanical modulation; Self-powered environmental monitoring; TRIBOELECTRIC NANOGENERATOR; CONVERTER; FUTURE;
D O I
10.1016/j.oceaneng.2024.119683
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Small-scale wave energy harvesting can be used for self-powered marine environmental monitoring, with the advantages of sustainability, convenience, and environmental protection. The low-frequency and strong random fluctuations of ocean wave motion are not conducive to electromechanical conversion. In this paper, we propose a mechanically modulated wave energy harvester embedded with interference-free triboelectric nanogenerators. The mass pendulum oscillates under irregular low-frequency wave excitation, and then the oscillation is mechanically modulated into a unidirectional high-speed rotation of four permanent magnet disks. The elastic parts on both sides of the mass pendulum are functionalized into multi-layered folding triboelectric nanogenerators, which neither increase the volume of the wave energy harvesting system nor affect the operation of the electromagnetic generator. The prototype was manufactured and the experimental results show that the sum of the average power of the prototype is 4.8 W under excitation at a frequency of 3 Hz and a inclination angle of 40 degrees. The 0.47 F capacitor can be charged to 5 V in 80 s by the prototype under the wave excitation generated by push plate, and then used for self-powered marine environmental monitoring (illumination, temperature and pH) and wireless information transmission.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring
    Zhao, Lin-Chuan
    Zou, Hong-Xiang
    Xie, Xing
    Guo, Ding-Hua
    Gao, Qiu-Hua
    Wu, Zhi-Yuan
    Yan, Ge
    Wei, Ke-Xiang
    Zhang, Wen-Ming
    NANO ENERGY, 2023, 108
  • [2] Ocean wave energy harvesting with high energy density and self-powered monitoring system
    Lu, Ze-Qi
    Zhao, Long
    Fu, Hai-Ling
    Yeatman, Eric
    Ding, Hu
    Chen, Li-Qun
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [3] RESEARCH PROGRESS OF WAVE ENERGY HARVESTING AND SELF-POWERED MARINE UNMANNED ELECTROMECHANICAL SYSTEM
    Zou H.
    Su C.
    Zhao L.
    Zhang W.
    Wei K.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (10): : 2115 - 2131
  • [4] Enhanced variable reluctance energy harvesting for self-powered monitoring
    Zhang, Ying
    Wang, Wei
    Xie, Junxiao
    Lei, Yaguo
    Cao, Junyi
    Xu, Ye
    Bader, Sebastian
    Bowen, Chris
    Oelmann, Bengt
    APPLIED ENERGY, 2022, 321
  • [5] Self-powered skin electronics for energy harvesting and healthcare monitoring
    Wu, M.
    Yao, K.
    Li, D.
    Huang, X.
    Liu, Y.
    Wang, L.
    Song, E.
    Yu, J.
    Yu, X.
    MATERIALS TODAY ENERGY, 2021, 21
  • [6] Triboelectric Nanogenerators for Marine Applications: Recent Advances in Energy Harvesting, Monitoring, and Self-Powered Equipment
    Dip, Tanvir Mahady
    Arin, Md. Reasat Aktar
    Anik, Habibur Rahman
    Uddin, Md Mazbah
    Tushar, Shariful Islam
    Sayam, Abdullah
    Sharma, Suraj
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (21):
  • [7] Triboelectric Nanogenerators for Marine Applications: Recent Advances in Energy Harvesting, Monitoring, and Self-Powered Equipment
    Dip, Tanvir Mahady
    Arin, Md. Reasat Aktar
    Anik, Habibur Rahman
    Uddin, Md Mazbah
    Tushar, Shariful Islam
    Sayam, Abdullah
    Sharma, Suraj
    ADVANCED MATERIALS TECHNOLOGIES, 2023,
  • [8] Research progress of energy harvesting in transportation environment and self-powered transportation infrastructure health monitoring
    Du R.
    Zhu S.
    Wei K.
    Zhang W.
    Zou H.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (03): : 3 - 23
  • [9] Energy harvesting for self-powered nanosystems
    Zhong Lin Wang
    Nano Research, 2008, 1 : 1 - 8
  • [10] Energy Harvesting for Self-Powered Nanosystems
    Wang, Zhong Lin
    NANO RESEARCH, 2008, 1 (01) : 1 - 8