A New Brain Network Construction Paradigm for Brain Disorder via Diffusion-Based Graph Contrastive Learning

被引:38
作者
Zong, Yongcheng [1 ]
Zuo, Qiankun [2 ]
Michael Kwok-Po Ng [3 ]
Lei, Baiying [4 ]
Wang, Shuqiang [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] Hubei Univ Econ, Sch Informat Engn, Hubei Key Lab Digital Finance Innovat, Wuhan 430205, Hubei, Peoples R China
[3] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
[4] Shenzhen Univ, Shenzhen Univ Med Sch, Sch Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen 518060, Peoples R China
关键词
Brain modeling; Contrastive learning; Network analyzers; Deep learning; Neuroimaging; Feature extraction; Software; Alzheimers disease; autism spectrum disorder; brain network; graph contrastive learning; region-aware diffusion; ALZHEIMERS-DISEASE; NEURAL-NETWORKS; FRAMEWORK;
D O I
10.1109/TPAMI.2024.3442811
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.
引用
收藏
页码:10389 / 10403
页数:15
相关论文
共 54 条
[1]   Resting-State Functional Connectivity Changes Associated with Visuospatial Cognitive Deficits in Patients with Mild Alzheimer Disease [J].
Balachandar, Rakesh ;
Bharath, Srikala ;
John, John P. ;
Joshi, Himanshu ;
Sadanand, Shilpa ;
Saini, Jitender ;
Kumar, Keshav J. ;
Varghese, Mathew .
DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2017, 43 (5-6) :229-236
[2]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[3]   Graph Neural Networks in Network Neuroscience [J].
Bessadok, Alaa ;
Mahjoub, Mohamed Ali ;
Rekik, Islem .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) :5833-5848
[4]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[5]   BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks [J].
Cui, Hejie ;
Dai, Wei ;
Zhu, Yanqiao ;
Kan, Xuan ;
Gu, Antonio Aodong Chen ;
Lukemire, Joshua ;
Zhan, Liang ;
He, Lifang ;
Guo, Ying ;
Yang, Carl .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (02) :493-506
[6]   Identifying Brain Networks at Multiple Time Scales via Deep Recurrent Neural Network [J].
Cui, Yan ;
Zhao, Shijie ;
Wang, Han ;
Xie, Li ;
Chen, Yaowu ;
Han, Junwei ;
Guo, Lei ;
Zhou, Fan ;
Liu, Tianming .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (06) :2515-2525
[7]   PANDA: a pipeline toolbox for analyzing brain diffusion images [J].
Cui, Zaixu ;
Zhong, Suyu ;
Xu, Pengfei ;
He, Yong ;
Gong, Gaolang .
FRONTIERS IN HUMAN NEUROSCIENCE, 2013, 7
[8]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[9]   The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture [J].
Fan, Lingzhong ;
Li, Hai ;
Zhuo, Junjie ;
Zhang, Yu ;
Wang, Jiaojian ;
Chen, Liangfu ;
Yang, Zhengyi ;
Chu, Congying ;
Xie, Sangma ;
Laird, Angela R. ;
Fox, Peter T. ;
Eickhoff, Simon B. ;
Yu, Chunshui ;
Jiang, Tianzi .
CEREBRAL CORTEX, 2016, 26 (08) :3508-3526
[10]   Deep Learning Framework for Alzheimer's Disease Diagnosis via 3D-CNN and FSBi-LSTM [J].
Feng, Chiyu ;
Elazab, Ahmed ;
Yang, Peng ;
Wang, Tianfu ;
Zhou, Feng ;
Hu, Huoyou ;
Xiao, Xiaohua ;
Lei, Baiying .
IEEE ACCESS, 2019, 7 :63605-63618