General Quasi Overlap Functions and Fuzzy Neighborhood Systems-Based Fuzzy Rough Sets With Their Applications

被引:0
|
作者
Li, Mengyuan [1 ]
Zhang, Xiaohong [2 ]
Shang, Jiaoyan [2 ]
Ma, Yingcang [3 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Elect & Control Engn, Xian 710021, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Peoples R China
[3] Xian Polytech Univ, Sch Sci, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy rough sets; fuzzy neighborhood systems; feature select; general quasi overlap functions; neural network; ENTITY;
D O I
10.1109/TKDE.2024.3474728
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy rough sets are important mathematical tool for processing data using existing knowledge. Fuzzy rough sets have been widely studied and used into various fields, such as data reduction and image processing, etc. In extensive literature we have studied, general quasi overlap functions and fuzzy neighborhood systems are broader than other all fuzzy operators and knowledge used in existing fuzzy rough sets, respectively. In this article, a novel fuzzy rough sets model (shortly (I, Q, NS)-fuzzy rough sets) is proposed using fuzzy implications, general quasi overlap functions and fuzzy neighborhood systems, which contains almost all existing fuzzy rough sets. Then, a novel feature selection algorithm (called IQNS-FS algorithm) is proposed and implemented using (I, Q, NS)-fuzzy rough sets, dependency and specificity measure. The results of 12 datasets indicate that IQNS-FS algorithm performs better than others. Finally, we input the results of IQNS-FS algorithm into single hidden layer neural networks and other classification algorithms, the results illustrate that the IQNS-FS algorithm can be better connected with neural networks than other classification algorithms. The high classification accuracy of single hidden layer neural networks (a very simple structure) further shows that the attributes selected by the IQNS-FS algorithm are important which can express the features of the datasets.
引用
收藏
页码:8349 / 8361
页数:13
相关论文
共 50 条
  • [21] SIMILARITY MEASURES OF FUZZY ROUGH SETS BASED ON THE LP METRIC
    Ye, Qi-Hong
    Wu, Wei-Zhi
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 811 - 816
  • [22] Algebraic properties of adjunction-based fuzzy rough sets
    Deng, Tingquan
    Chen, Yanmei
    Gao, Guanghong
    ROUGH SETS, FUZZY SETS, DATA MINING AND GRANULAR COMPUTING, PROCEEDINGS, 2007, 4482 : 47 - +
  • [23] Granular representation of OWA-based fuzzy rough sets
    Palangetic, Marko
    Cornelis, Chris
    Greco, Salvatore
    Slowinski, Roman
    FUZZY SETS AND SYSTEMS, 2022, 440 : 112 - 130
  • [24] Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets
    He, Qiang
    Wu, Congxin
    SOFT COMPUTING, 2011, 15 (06) : 1105 - 1114
  • [25] Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets
    Qiang He
    Congxin Wu
    Soft Computing, 2011, 15 : 1105 - 1114
  • [26] An Attribute Reduction Method based on Fuzzy-Rough Sets Theories
    Hu Guohua
    Shi Yuemei
    PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL III, 2009, : 828 - 831
  • [27] Unsupervised attribute reduction for mixed data based on fuzzy rough sets
    Yuan, Zhong
    Chen, Hongmei
    Li, Tianrui
    Yu, Zeng
    Sang, Binbin
    Luo, Chuan
    INFORMATION SCIENCES, 2021, 572 : 67 - 87
  • [28] Concurrent assembly sequence planning method based on fuzzy rough sets
    Hu X.
    Zhu W.
    Yu T.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2010, 46 (15): : 130 - 135
  • [29] Parameterized attribute reduction with Gaussian kernel based fuzzy rough sets
    Chen, Degang
    Hu, Qinghua
    Yang, Yongping
    INFORMATION SCIENCES, 2011, 181 (23) : 5169 - 5179
  • [30] Robust Feature Selection Based on Fuzzy Rough Sets with Representative Sample
    Zhang, Zhimin
    Chen, Weitong
    Liu, Chengyu
    Kang, Yun
    Liu, Feng
    Li, Yuwen
    Wei, Shoushui
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2019, 2019, 11888 : 151 - 165