On the convergence of critical points of the

被引:0
作者
Babadjian, Jean-Francois [1 ]
Millot, Vincent [2 ]
Rodiac, Remy [1 ]
机构
[1] Univ Paris Saclay, Lab Math Orsay, CNRS, F-91405 Orsay, France
[2] Univ Paris Est Creteil, Univ Gustave Eiffel, LAMA, UPEM,CNRS, F-94010 Creteil, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2024年 / 41卷 / 06期
关键词
Keywords. Ambrosio-Tortorelli energy; Mumford-Shah energy; fracture; critical points; inner variations; QUASI-HARMONIC SPHERES; MUMFORD-SHAH; MIN-MAX; PHASE; APPROXIMATION; QUANTIZATION; EXISTENCE; BEHAVIOR;
D O I
10.4171/AIHPC/102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to study the asymptotic behavior of critical points {(u(epsilon),v(epsilon))}epsilon>0 of the Ambrosio-Tortorelli functional. Under a uniform energy bound assumption, the usual Gamma-convergence theory ensures that (u(epsilon),v(epsilon)) converges in the L-2-sense to some (u & lowast;,1) as epsilon -> 0, where u & lowast; is a special function of bounded variation. Assuming further the Ambrosio-Tortorelli energy of (u epsilon,v epsilon) to converge to the Mumford-Shah energy of u & lowast;, the later is shown to be a critical point with respect to inner variations of the Mumford-Shah functional. As a byproduct, the second inner variation is also shown to pass to the limit. To establish these convergence results, interior (C infinity) regularity and boundary regularity for Dirichlet boundary conditions are first obtained for a fixed parameter epsilon>0. The asymptotic analysis is then performed by means of varifold theory in the spirit of scalar phase transition problems.
引用
收藏
页码:1367 / 1417
页数:51
相关论文
共 50 条
  • [11] On Critical Values of Polynomials with Real Critical Points
    Aimo Hinkkanen
    Ilgiz Kayumov
    Constructive Approximation, 2010, 32 : 385 - 392
  • [12] On Convergence of Fixed Points in Fuzzy Metric Spaces
    Shen, Yonghong
    Qiu, Dong
    Chen, Wei
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [13] Critical Points of Strichartz Functional
    Wayne, C. Eugene
    Zharnitsky, Vadim
    EXPERIMENTAL MATHEMATICS, 2021, 30 (02) : 235 - 257
  • [14] Critical points of modular forms
    van Ittersum, Jan-Willem
    Ringeling, Berend
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (10) : 2695 - 2728
  • [15] Circulants and critical points of polynomials
    Kushel, Olga
    Tyaglov, Mikhail
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (02) : 634 - 650
  • [16] On the distribution of critical points of a polynomial
    Subramanian, Sneha Dey
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 9
  • [17] Critical Points in a Crystal and Procrystal
    Vladimir Tsirelson
    Yury Abramov
    Valery Zavodnik
    Adam Stash
    Elena Belokoneva
    Jochen Stahn
    Ullrich Pietsch
    Dirk Feil
    Structural Chemistry, 1998, 9 : 249 - 254
  • [18] Critical points in a crystal and procrystal
    Tsirelson, V
    Abramov, Y
    Zavodnik, V
    Stash, A
    Belokoneva, E
    Stahn, J
    Pietsch, U
    Feil, D
    STRUCTURAL CHEMISTRY, 1998, 9 (04) : 249 - 254
  • [19] Critical points of generalized scaling
    Bershadskii, A
    PHYSICA A, 1999, 268 (1-2): : 142 - 148
  • [20] Critical points of orthogonal polynomials
    Pilar Alfaro, Maria
    Bello-Hernandez, Manuel
    Maria Montaner, Jesus
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1655 - 1667