Production of a ruminal bacterial phytase in the green microalga Chlamydomonas reinhardtii with potential applications in monogastric animal feed

被引:0
作者
Peraza-Echeverria S. [1 ]
Bernardo-Candelero S. [1 ]
Baas-Espinola F.M. [1 ]
Puch-Hau C. [3 ]
Rivera-Solís R.A. [1 ,4 ]
Echevarría-Machado I. [2 ]
Borges-Argáez I.C. [1 ]
Herrera-Valencia V.A. [1 ]
机构
[1] Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, C.P. 97200, Yucatán
[2] Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, C.P. 97200, Yucatán
[3] Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Unidad Mérida, Km. 6, Antigua Carretera a Progreso, Apdo, Postal 73-Cordemex, Mérida, 97310, Yucatán
[4] Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte, km 33.5, Tablaje Catastral 13615, Chuburna de Hidalgo Inn, Mérida, C.P. 97203, Yucatán
来源
Herrera-Valencia, Virginia Aurora (vicky@cicy.mx) | 1600年 / Elsevier Ltd卷 / 14期
关键词
Chlamydomonas reinhardtii; Chloroplast; Microalga; Phytase; Recombinant protein;
D O I
10.1016/j.biteb.2021.100660
中图分类号
学科分类号
摘要
Phytases are phosphatases employed in monogastric animal feed to improve animal growth rates and protect the environment by reducing phosphorous in manure. In this study, the highly active phytase PhyAsr of the protein tyrosine phosphatase class, which was derived from the ruminal bacterium Selenomonas ruminantium, was successfully produced for the first time in the chloroplast of the green microalga Chlamydomonas reinhardtii. Two homoplasmic lines (C1 and C3) exhibited the highest level of PhyAsr expression, while the highest phytase activity was detected in the C1 line at 34 U/g dry weight. The results of this study indicate that C. reinhardtii is a suitable host for producing the phytase PhyAsr, which may be utilized as a supplement in the monogastric animal diet. © 2021 Elsevier Ltd
引用
收藏
相关论文
共 22 条
[1]  
Barnes D., Franklin S., Schultz J., Henry R., Brown E., Coragliotti A., Mayfield S.P., Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes, Mol. Genet. Genomics, 274, pp. 625-636, (2005)
[2]  
Casais-Molina M.L., Peraza-Echeverria S., Echevarria-Machado I., Herrrera-Valencia V.A., Expression of Chlamydomonas reinhardtii CrGPDH2 and CrGPDH3 cDNAs in yeast reveals that they encode functional glycerol-3-phosphate dehydrogenases involved in glycerol production and osmotic stress tolerance, J. Appl. Phycol., 28, pp. 219-226, (2016)
[3]  
Cheng K.J., Selinger L.B., Yanke L.J., Bae H.D., Zhou L., Forsberg C.W., Phytases of ruminal microorganisms, United States Patent. Patent no., 5, (1999)
[4]  
Chew K.W., Yap J.Y., Show P.L., Suan N.H., Juan J.C., Ling T.C., Lee D.J., Chang J.S., Microalgae biorefinery: high value products perspectives, Bioresour. Technol., 229, pp. 53-62, (2017)
[5]  
Day A., Goldschmidt-Clermont M., The chloroplast transformation toolbox: selectable markers and marker removal, Plant Biotechnol. J., 9, pp. 540-553, (2011)
[6]  
Erpel F., Restovic F., Arce-Johnson P., Development of phytase-expressing Chlamydomonas reinhardtii for monogastric animal nutrition, BMC Biotechnol., 16, (2016)
[7]  
Fields F.J., Lejzerowicz F., Schroeder D., Ngoi S.M., Tran M., McDonald D., Jiang L., Chang J.T., Knight R., Mayfield S., Effects of the microalgae Chlamydomonas on gastrointestinal health, J. Funct. Foods, 65, (2020)
[8]  
Green M.R., Sambrook J.F., Molecular Cloning: A Laboratory Manual, (2012)
[9]  
Harris E.H., The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use, (1989)
[10]  
Hong C.Y., Cheng K.J., Tseng T.H., Wang C.S., Liu L.F., Yu S.M., Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds, Transgenic Res., 13, pp. 29-39, (2004)