An Effective Machine Learning (ML) Approach to Quality Assessment of Voice over IP (VoIP) Calls

被引:14
作者
Cipressi, Elena [1 ,2 ]
Merani, Maria Luisa [1 ,3 ]
机构
[1] Research and Development Department, Empirix Inc., Modena
[2] Dipartimento di Ingegneria Enzo Ferrari, University of Modena and Reggio Emilia, Modena
[3] Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Parma
来源
IEEE Networking Letters | 2020年 / 2卷 / 02期
关键词
Machine learning (ML); mean opinion score (MOS); quality of experience (QoE); speech quality assessment; voice over IP (VoIP);
D O I
10.1109/LNET.2020.2984721
中图分类号
学科分类号
摘要
This letter puts forward a supervised ML technique to determine the Quality of Experience (QoE) of VoIP calls. It takes its beginning from an investigation on VQmon, an enhanced E-model version that estimates the quality of IP-based voice calls adopting an objective approach. The current study demonstrates VQmon shortcomings via a comparison between the Mean Opinion Score (MOS) values this technique predicts and the actual average ratings collected from a subjective listening quality campaign. It proposes to deploy Ordinal Logistic Regression (OLR) for speech quality assessment, and results disclose that OLR outperforms popular ML algorithms, in accuracy and confusion matrices. © 2019 IEEE.
引用
收藏
页码:90 / 94
页数:4
相关论文
共 20 条
[1]  
Cipressi E., Merani M.L., A comparative study on the quality of narrow-band and wide-band AMR VoLTE calls, Proc. IEEE 15th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), pp. 1273-1278, (2019)
[2]  
(2019)
[3]  
Jelassi S., Rubino G., Melvin H., Youssef H., Pujolle G., Quality of experience of VoIP service: A survey of assessment approaches and open issues, IEEE Commun. Surveys Tuts., 14, 2, pp. 491-513, (2012)
[4]  
Rahdari F., Eftekhari M., Using Bayesian classifiers for estimating quality of VoIP, Proc. 16th CSI Int. Symp. Artif. Intell. Signal Process. (AISP), pp. 348-353, (2012)
[5]  
Sun L., Ifeachor E.C., Perceived speech quality prediction for voice over IP-based networks, Proc. IEEE Int. Conf. Commun. (ICC), 4, pp. 2573-2577, (2002)
[6]  
Cherif W., Ksentini A., Negru D., Sidibe M., A PSQA: PESQ-like non-intrusive tool for QoE prediction in VoIP services, Proc. IEEE Int. Conf. Commun. (ICC), pp. 2124-2128, (2012)
[7]  
Alkhawaldeh R.S., Khawaldeh S., Pervaiz U., Alawida M., Alkhawaldeh H., NIML: Non-intrusive machine learning-based speech quality prediction on VoIP networks, IET Commun., 13, 16, pp. 2609-2616, (2019)
[8]  
Mohamed S., Cervantes-Perez F., Afifi H., Integrating networks measurements and speech quality subjective scores for control purposes, Proc. IEEE INFOCOM Conf. Comput. Commun. 20th Annu. Joint Conf. IEEE Comput. Commun. Soc., 2, pp. 641-649, (2001)
[9]  
Charonyktakis P., Plakia M., Tsamardinos I., Papadopouli M., On user-centric modular QoE prediction for VoIP based on machinelearning algorithms, IEEE Trans. Mobile Comput., 15, 6, pp. 1443-1456, (2016)
[10]  
James G., Witten D., Hastie T., Tibshirani R., An Introduction to Statistical Learning: With Applications in R, (2014)