HCC-Net: Holistic Cross-Joint Convolutional Network for CSI Feedback in Massive MIMO Systems

被引:0
作者
Zhao, Xiang [1 ]
Wang, Chao [1 ]
Mei, Lin [2 ]
Xu, Xu [2 ]
Peng, Tong [1 ]
机构
[1] Zhejiang Ocean Univ, Sch Informat Engn, Zhoushan 316000, Peoples R China
[2] Donghai Lab, Zhoushan 316021, Peoples R China
关键词
Convolution; Accuracy; Feature extraction; Decoding; Kernel; Estimation; Convolutional neural networks; Massive MIMO; CSI feedback; 2D discrete Fourier transform; deep learning; frequency-division duplexing;
D O I
10.1109/LWC.2024.3454425
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of massive multiple-input multiple-output (mMIMO) techniques, the network capacity, number of served users and communication efficiency have been improved dramatically compared to that with limited number of antennas. These advantages are established based on accurate channel state information (CSI) at the base station (BS), which comes with a very high cost due to continuous CSI feedback from all the user equipments (UEs). In this letter, we propose a neural network-based CSI compression scheme with simple encoder-decoder framework for mMIMO systems. To achieve high accuracy, our proposed framework constructs an overall perceptual encoder-decoder structure with holistic cross-joint convolution (HCC) modules of different scales. In addition, a perceptual loss is introduced into the proposed design to further improve the accuracy in matrix recovery and limits the computational cost. Substantial experimental results demonstrate that the proposed HCC network (HCC-Net) is superior to several advanced algorithms in terms of estimation accuracy and computational complexity, such as the CSiNet+ and TransNet.
引用
收藏
页码:2937 / 2941
页数:5
相关论文
共 50 条
  • [21] Binary Neural Network Aided CSI Feedback in Massive MIMO System
    Lu, Zhilin
    Wang, Jintao
    Song, Jian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (06) : 1305 - 1308
  • [22] Model-Driven Lightweight Network for CSI Feedback in Time-Varying Massive MIMO Systems
    Zhang, Yangyang
    Zhang, Xichang
    Liu, Yi
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4961 - 4966
  • [23] Deep Learning-Based Joint CSI Feedback and Hybrid Precoding in FDD mmWave Massive MIMO Systems
    Sun, Qiang
    Zhao, Huan
    Wang, Jue
    Chen, Wei
    ENTROPY, 2022, 24 (04)
  • [24] A Hyper-Network-Aided Approach for ISTA-based CSI Feedback in Massive MIMO systems
    Zou, Yafei
    Hu, Zhengyang
    Zhang, Yiqing
    Xue, Jiang
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [25] An Effective Network With Discrete Latent Representation Designed for Massive MIMO CSI Feedback
    Sun, Xinran
    Zhang, Zhengming
    Li, Chunguo
    Huang, Yongming
    Yang, Luxi
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (11) : 2648 - 2652
  • [26] MetaFormer-Based Lightweight Neural Network for Massive MIMO CSI Feedback
    Li, Jinxin
    Wang, Yujia
    Liu, Zhu
    Xiao, Pei
    Li, Gaosheng
    Joines, William T.
    Liao, Shaolin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (02) : 275 - 279
  • [27] Deep-Unfolding-Based Bit-Level CSI Feedback in Massive MIMO Systems
    Cao, Zheng
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (02) : 371 - 375
  • [28] AnciNet: An Efficient Deep Learning Approach for Feedback Compression of Estimated CSI in Massive MIMO Systems
    Sun, Yuyao
    Xu, Wei
    Fan, Lisheng
    Li, Geoffrey Ye
    Karagiannidis, George K.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (12) : 2192 - 2196
  • [29] CSI Feedback Based on Deep Learning for Massive MIMO Systems
    Liao, Yong
    Yao, Haimei
    Hua, Yuanxiao
    Li, Chunguo
    IEEE ACCESS, 2019, 7 : 86810 - 86820
  • [30] Variational AutoEncoder Based CSI Feedback for Massive MIMO Systems
    Swain, Anusaya
    Hiremath, Shrishail M.
    Patra, Sarat Kumar
    WIRELESS PERSONAL COMMUNICATIONS, 2023,