Polymorphism control of fast-sintered NASICON-type LiZr2(PO4)3

被引:0
作者
Lin, Lin [1 ]
Hatzell, Kelsey B. [1 ,2 ]
机构
[1] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
SOLID ELECTROLYTES; PARTICLE-SIZE; TEMPERATURE; CONDUCTORS; MOBILITY; LI+;
D O I
10.1039/d4ta04507f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Long processing times and high temperature sintering can lead to high energy intensities and costs for all solid state battery manufacturing. Fast-sintering methods that are compatible with air can potentially overcome these challenges. Dynamic pulses of electrified heat also provide a pathway for manipulating materials and material transformation pathways to provide more control over structural heterogeneity. Herein, we examine how ultra-fast sintering approaches impact polymorphism in NASICON-type solid electrolytes (e.g. LiZr2(PO4)3). The role of microstructure (e.g. porosity), the polymorphism in starting powders, and the presence of liquid sintering aids are all examined to understand how polymorphic phases can be tailored with fast-sintering approaches. Fast sintering techniques which decrease the loss of volatile lithium may enable high density solid electrolytes with tailored material phases.
引用
收藏
页码:29932 / 29940
页数:9
相关论文
共 50 条
  • [41] On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2- x(PO4)3 Nasicon type materials
    Arbi, K.
    Jimenez, R.
    Salkus, T.
    Orliukas, A. F.
    Sanz, J.
    SOLID STATE IONICS, 2015, 271 : 28 - 33
  • [42] A systematic study of Nasicon-type Lii + XMXTi2 _ x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy
    Perez-Estebanez, M.
    Isasi-Marin, J.
    Toebbens, D. M.
    Rivera-Calzada, A.
    Leon, C.
    SOLID STATE IONICS, 2014, 266 : 1 - 8
  • [43] Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries
    Pang, Gang
    Yuan, Changzhou
    Nie, Ping
    Ding, Bing
    Zhu, Jiajia
    Zhang, Xiaogang
    NANOSCALE, 2014, 6 (12) : 6328 - 6334
  • [44] Synthesis and properties of AgTi2(PO4)3-based NASICON-type phosphates doped with Nb5+, Zr4+, and Ga3+
    Pinus, I. Yu.
    Bok, T. O.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2010, 46 (04) : 412 - 417
  • [45] Ionic Transport and Electrochemical Properties of NaSICON-Type Li1+XHf2-XGaX(PO4)3 for All-Solid-State Lithium Batteries
    Ladenstein, Lukas
    Hogrefe, Katharina
    Wilkening, H. Martin R.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (07) : 8823 - 8834
  • [46] Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2-xAlx(PO4)3 (x=0; 0.3) prepared by mechanical activation
    Kosova, N. V.
    Devyatkina, E. T.
    Stepanov, A. P.
    Buzlukov, A. L.
    IONICS, 2008, 14 (04) : 303 - 311
  • [47] Electrical and mechanical properties of water-stable NASICON-type Li1+xAlxGe0.2Ti1.8-x(PO4)3
    Bai, Fan
    Mori, Daisuke
    Taminato, Sou
    Takeda, Yasuo
    Yamamoto, Osamu
    Nemori, Hiroyoshi
    Nomura, Masaya
    Imanishi, Nobuyuki
    SOLID STATE IONICS, 2020, 345
  • [48] Influence of AlPO4 Impurity on the Electrochemical Properties of NASICON-Type Li1.5Al0.5Ti1.5(PO4)3 Solid Electrolyte
    Campanella, Daniele
    Krachkovskiy, Sergey
    Faure, Cyril
    Zhu, Wen
    Feng, Zimin
    Savoie, Sylvio
    Girard, Gabriel
    Demers, Hendrix
    Vijh, Ashok
    George, Chandramohan
    Armand, Michel
    Belanger, Daniel
    Paolella, Andrea
    CHEMELECTROCHEM, 2022, 9 (24)
  • [49] NASICON-Type Li1+xAlxZryTi2-x-y(PO4)3 Solid Electrolytes: Effect of Al, Zr Co-Doping and Synthesis Method
    Stenina, Irina
    Pyrkova, Anastasia
    Yaroslavtsev, Andrey
    BATTERIES-BASEL, 2023, 9 (01):
  • [50] Spray-Flame Synthesis of NASICON-Type Rhombohedral (α) Li1+xYxZr2-x(PO4)3 [x=0-0.2] Solid Electrolytes
    Ali, Md Yusuf
    Chen, Tianyu
    Orthner, Hans
    Wiggers, Hartmut
    NANOMATERIALS, 2024, 14 (15)