Polymorphism control of fast-sintered NASICON-type LiZr2(PO4)3

被引:0
作者
Lin, Lin [1 ]
Hatzell, Kelsey B. [1 ,2 ]
机构
[1] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
SOLID ELECTROLYTES; PARTICLE-SIZE; TEMPERATURE; CONDUCTORS; MOBILITY; LI+;
D O I
10.1039/d4ta04507f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Long processing times and high temperature sintering can lead to high energy intensities and costs for all solid state battery manufacturing. Fast-sintering methods that are compatible with air can potentially overcome these challenges. Dynamic pulses of electrified heat also provide a pathway for manipulating materials and material transformation pathways to provide more control over structural heterogeneity. Herein, we examine how ultra-fast sintering approaches impact polymorphism in NASICON-type solid electrolytes (e.g. LiZr2(PO4)3). The role of microstructure (e.g. porosity), the polymorphism in starting powders, and the presence of liquid sintering aids are all examined to understand how polymorphic phases can be tailored with fast-sintering approaches. Fast sintering techniques which decrease the loss of volatile lithium may enable high density solid electrolytes with tailored material phases.
引用
收藏
页码:29932 / 29940
页数:9
相关论文
共 50 条
  • [31] The effect of composite formation with oxides on the ion conductivity of NASICON-Type LiTi2(PO4)3 and olivine-type LiFePO4
    Svitan'ko, A.
    Scopets, V.
    Novikova, S.
    Yaroslavtsev, A.
    SOLID STATE IONICS, 2015, 271 : 42 - 47
  • [32] Dielectric relaxations in NASICON-type Li1.25Zr1.75Al0.25(PO4)3 solid electrolyte
    Dwivedi, Sushmita
    Badole, Manish
    Gangwar, Kaushal
    Rajput, Harsha
    Kumar, Sunil
    FUNCTIONAL MATERIALS LETTERS, 2022, 15 (02)
  • [33] Study of the glass-to-crystal transformation of the NASICON-type solid electrolyte Li1+xAlxGe2 - x(PO4)3
    Liu, Zhongqing
    Venkatachalam, Sabarinathan
    Kirchhain, Holger
    van Wuellen, Leo
    SOLID STATE IONICS, 2016, 295 : 32 - 40
  • [34] Synthesis and optimization of NASICON-type Li3V2(PO4)3 by adipic acid-mediated solid-state approach
    J. N. Son
    S. H. Kim
    M. C. Kim
    K. J. Kim
    V. Aravindan
    W. I. Cho
    Y. S. Lee
    Journal of Applied Electrochemistry, 2013, 43 : 583 - 593
  • [35] Enhanced total ionic conductivity of NASICON-type solid-state electrolyte Li1+xAlxTi2−x(PO4)3
    Agnes Lakshmanan
    Ramkumar Gurusamy
    Sabarinathan Venkatachalam
    Ionics, 2023, 29 : 5123 - 5138
  • [36] A microcontact impedance study on NASICON-type Li1+xAlxTi2-x(PO4)3 (0 ≤ x ≤ 0.5) single crystals
    Rettenwander, D.
    Welzl, A.
    Pristat, S.
    Tietz, F.
    Taibl, S.
    Redhammer, G. J.
    Fleig, J.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (04) : 1506 - 1513
  • [37] Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi2-x(PO4)3 NASICON-type materials
    Kahlaoui, Radhouene
    Arbi, Kamel
    Jimenez, Ricardo
    Sobrados, Isabel
    Sanz, Jesus
    Ternane, Riadh
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (20) : 8464 - 8476
  • [38] Superior ionic conductivity of W-doped NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Guo, Yudi
    Zhao, Erqing
    Li, Jiaming
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (12) : 7081 - 7091
  • [39] Synthesis, structural characterization and ionic conductivity of NASICON-type Bax/2Li1-xTi2(PO4)3 (0.4 ≤ x ≤ 1) materials
    Kahlaoui, R.
    Arbi, K.
    Jimenez, R.
    Sobrados, I.
    Mehnaoui, M.
    Sanz, J.
    Ternane, R.
    IONICS, 2017, 23 (04) : 837 - 846
  • [40] Microstructure and ion transport in Li1+x Ti2-x M x (PO4)3 (M = Cr, Fe, Al) NASICON-type materials
    Svitan'ko, A. I.
    Novikova, S. A.
    Stenina, I. A.
    Skopets, V. A.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2014, 50 (03) : 273 - 279