Polymorphism control of fast-sintered NASICON-type LiZr2(PO4)3

被引:0
作者
Lin, Lin [1 ]
Hatzell, Kelsey B. [1 ,2 ]
机构
[1] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
SOLID ELECTROLYTES; PARTICLE-SIZE; TEMPERATURE; CONDUCTORS; MOBILITY; LI+;
D O I
10.1039/d4ta04507f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Long processing times and high temperature sintering can lead to high energy intensities and costs for all solid state battery manufacturing. Fast-sintering methods that are compatible with air can potentially overcome these challenges. Dynamic pulses of electrified heat also provide a pathway for manipulating materials and material transformation pathways to provide more control over structural heterogeneity. Herein, we examine how ultra-fast sintering approaches impact polymorphism in NASICON-type solid electrolytes (e.g. LiZr2(PO4)3). The role of microstructure (e.g. porosity), the polymorphism in starting powders, and the presence of liquid sintering aids are all examined to understand how polymorphic phases can be tailored with fast-sintering approaches. Fast sintering techniques which decrease the loss of volatile lithium may enable high density solid electrolytes with tailored material phases.
引用
收藏
页码:29932 / 29940
页数:9
相关论文
共 50 条
  • [21] Competition between activation energy and migration entropy in lithium ion conduction in superionic NASICON-type Li1-3xGaxZr2(PO4)3
    Duan, Shanshan
    Huang, Can
    Liu, Min
    Cao, Zhiwen
    Tian, Xiaocong
    Hou, Shuen
    Li, Jiangyu
    Huang, Boyuan
    Jin, Hongyun
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (12) : 7817 - 7825
  • [22] Prediction of Li-ion conductivity in Ca and Si co-doped LiZr2(PO4)3 using a denoising autoencoder for experimental data
    Yokoyama, Yumika
    Noguchi, Shuto
    Ishikawa, Kazuki
    Tanibata, Naoto
    Takeda, Hayami
    Nakayama, Masanobu
    Kobayashi, Ryo
    Karasuyama, Masayuki
    APL MATERIALS, 2024, 12 (11):
  • [23] Hybrid density functional theoretical study of NASICON-type NaxTi2(PO4)3 (x=1-4)
    Gryaznov, Denis
    Stauffer, Shannon K.
    Kotomin, Eugene A.
    Vilciauskas, Linas
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (21) : 11861 - 11870
  • [24] LiSnZr(PO4)3: NASICON-type solid electrolyte with excellent room temperature Li+ conductivity
    Pareek, Tanvi
    Dwivedi, Sushmita
    Singh, Birender
    Kumar, Deepu
    Kumar, Pradeep
    Kumar, Sunil
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 777 : 602 - 611
  • [25] Distribution and mobility of lithium in NASICON-type Li1-xTi2-xNbx(PO4)3 (0 ≤ x ≤ 0.5) compounds
    Kahlaoui, Radhouene
    Arbi, Kamel
    Jimenez, Ricardo
    Sobrados, Isabel
    Sanz, Jesus
    Ternane, Riadh
    MATERIALS RESEARCH BULLETIN, 2018, 101 : 146 - 154
  • [26] Temperature effect and kinetics, LiZr2(PO4)3 and Li1.2Al0.2Zr1.8(PO4)3 and electrochemical properties for rechargeable ion batteries
    Akkinepally, Bhargav
    Reddy, I. Neelakanta
    Manjunath, V
    Reddy, M., V
    Mishra, Yogendra Kumar
    Ko, Tae Jo
    Zaghib, Karim
    Shim, Jaesool
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (10) : 14116 - 14132
  • [27] Electrical Conductivity and Electrochemical Characteristics of Na3V2(PO4)3-Based NASICON-Type Materials
    Novikova, S. A.
    Larkovich, R. V.
    Chekannikov, A. A.
    Kulova, T. L.
    Skundin, A. M.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2018, 54 (08) : 794 - 804
  • [28] Enhanced total ionic conductivity of NASICON-type solid-state electrolyte Li1+xAlxTi2-x(PO4)3
    Lakshmanan, Agnes
    Gurusamy, Ramkumar
    Venkatachalam, Sabarinathan
    IONICS, 2023, 29 (12) : 5123 - 5138
  • [29] High Li+ conduction in NASICON-type Li1+x,YxZr2-x(PO4)3 at room temperature
    Li, Yutao
    Liu, Meijing
    Liu, Kai
    Wang, Chang-An
    JOURNAL OF POWER SOURCES, 2013, 240 : 50 - 53
  • [30] Characterization of Lithium Insertion into NASICON-Type Li1+xTi2-xAlx (PO4)3 and Its Electrochemical Behavior
    Arbi, K.
    Kuhn, A.
    Sanz, J.
    Garcia-Alvarado, F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) : A654 - A659