Polymorphism control of fast-sintered NASICON-type LiZr2(PO4)3

被引:0
作者
Lin, Lin [1 ]
Hatzell, Kelsey B. [1 ,2 ]
机构
[1] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
SOLID ELECTROLYTES; PARTICLE-SIZE; TEMPERATURE; CONDUCTORS; MOBILITY; LI+;
D O I
10.1039/d4ta04507f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Long processing times and high temperature sintering can lead to high energy intensities and costs for all solid state battery manufacturing. Fast-sintering methods that are compatible with air can potentially overcome these challenges. Dynamic pulses of electrified heat also provide a pathway for manipulating materials and material transformation pathways to provide more control over structural heterogeneity. Herein, we examine how ultra-fast sintering approaches impact polymorphism in NASICON-type solid electrolytes (e.g. LiZr2(PO4)3). The role of microstructure (e.g. porosity), the polymorphism in starting powders, and the presence of liquid sintering aids are all examined to understand how polymorphic phases can be tailored with fast-sintering approaches. Fast sintering techniques which decrease the loss of volatile lithium may enable high density solid electrolytes with tailored material phases.
引用
收藏
页码:29932 / 29940
页数:9
相关论文
共 50 条
  • [1] Improved ionic conductivity in NASICON-type Sr2+ doped LiZr2(PO4)3
    Kumar, Sunil
    Balaya, Palani
    SOLID STATE IONICS, 2016, 296 : 1 - 6
  • [2] NASICON-type La3+ substituted LiZr2(PO4)3 with improved ionic conductivity as solid electrolyte
    Ramar, Vishwanathan
    Kumar, Sunil
    Sivakkumar, S. R.
    Balaya, Palani
    ELECTROCHIMICA ACTA, 2018, 271 : 120 - 126
  • [3] A systematic study of annealing environment and Al dopant effect on NASICON-type LiZr2(PO4)3 solid electrolyte
    Reddy, I. Neelakanta
    Akkinepally, Bhargav
    Reddy, Ch Venkata
    Sreedhar, Adem
    Ko, Tae Jo
    Shim, Jaesool
    IONICS, 2020, 26 (09) : 4287 - 4298
  • [4] Effect of lithium isotopes on the phase transition in NASICON-type lithium-ion conductor LiZr2(PO4)3
    Inaguma, Yoshiyuki
    Funayama, Koki
    Aimi, Akihisa
    Mori, Daisuke
    Hamasaki, Yosuke
    Ueda, Koichiro
    Ikeda, Minoru
    Ohno, Takahisa
    Mitsuishi, Kazutaka
    SOLID STATE IONICS, 2018, 321 : 29 - 33
  • [5] A systematic study of annealing environment and Al dopant effect on NASICON-type LiZr2(PO4)3 solid electrolyte
    I. Neelakanta Reddy
    Bhargav Akkinepally
    Ch. Venkata Reddy
    Adem Sreedhar
    Tae Jo Ko
    Jaesool Shim
    Ionics, 2020, 26 : 4287 - 4298
  • [6] Catalytic activity of LiZr2(PO4)3 nasicon-type phosphates in ethanol conversion process in conventional and membrane reactors
    Ilin, Andrey B.
    Orekhova, Natalia V.
    Ermilova, Margarita M.
    Yaroslavtsev, Andrey B.
    CATALYSIS TODAY, 2016, 268 : 29 - 36
  • [7] NASICON-type Ta5+ substituted LiZr2(PO4)3 with improved ionic conductivity as a prospective solid electrolyte
    Pu, Xingrui
    Cheng, Xing
    Yan, Qiaohong
    Lin, Yueming
    Yan, Rentai
    Yang, Ruize
    Zhu, Xiaohong
    CERAMICS INTERNATIONAL, 2024, 50 (06) : 9007 - 9015
  • [8] Sol-gel synthesis and electrochemical properties extracted by phase inflection detection method of NASICON-type solid electrolytes LiZr2(PO4)3 and Li1.2Zr1.9Ca0.1(PO4)3
    Cassel, A.
    Fleutot, B.
    Courty, M.
    Viallet, V.
    Morcrette, M.
    SOLID STATE IONICS, 2017, 309 : 63 - 70
  • [9] Lithium Ion Conduction In Sol-Gel Synthesized LiZr2(PO4)3 Polymorphs
    Kumar, Milind
    Yadav, Arun Kumar
    Anita
    Sen, Somaditya
    Kumar, Sunil
    62ND DAE SOLID STATE PHYSICS SYMPOSIUM, 2018, 1942
  • [10] Structure and Vibrational Dynamics of NASICON-Type LiTi2(PO4)3
    Giarola, Marco
    Sanson, Andrea
    Tietz, Frank
    Pristat, Sylke
    Dashjay, Enkhtsetseg
    Rettenwander, Daniel
    Redhammer, Guenther J.
    Mariotto, Gino
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (07) : 3697 - 3706