Synthesis and Characterization of Sb-Substituted (K0.5Na0.5)NbO3 Piezoelectric Ceramics

被引:15
作者
Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga LV-1063, Latvia [1 ]
机构
[1] Institute of Solid State Physics, University of Latvia, Riga LV-1063
来源
Integr Ferroelectr | 2008年 / 1卷 / 52-61期
关键词
Dielectric properties; Microstructure; Piezoelectric properties; Sintering;
D O I
10.1080/10584580802558043
中图分类号
学科分类号
摘要
Lead-free piezoelectric ceramics (K0.5Na0.5)(Nb1-xSbx) O3+0.5 mol.%MnO2, where x = 0 ÷ 0.10, with single phase structure and rhombohedral symmetry at room temperature were prepared by conventional ceramic technology. The optimal sintering temperatures of compositions were within 1100°-1140°C. MnO2 functions as a sintering aid and effectively improves the densification. The samples reached density from 4.26 g/cm3 for undoped (K0.5Na0.5)NbO3 to 4.40 g/cm3 for Mn/Sb5+ co-doped ceramics. The co-effects of MnO2 doping and Sb5+ substitution lead to significant improvement in dielectric and piezoelectric properties: at the Tc increased from 6000 (KNN) to 12400 (x = 0.04), d33 = 92 ÷ 192 pC/N, kp = 0.32, ÷ 0.46, kt = 0.34 ÷ 0.48. © Taylor & Francis Group.
引用
收藏
页码:52 / 61
页数:9
相关论文
共 17 条
  • [1] Jaffe B., Cook P., Jaffe H., Pb(Ti,Zr)O<sub>3</sub> solid solutions, Piezoelectric Ceramics, pp. 140-8, (1971)
  • [2] Zuo R., Fang X., Ye C., Phase transitional behaviour and piezoelectric propertiesoflead-free(Na<sub>0.5</sub>K<sub>0.5</sub>)NbO<sub>3</sub>-(B i<sub>0.5</sub>K<sub>0.5</sub>)TiO<sub>3</sub> ceramics, J.Amer. Ceram. Soc., 90, 8, pp. 2424-2428, (2007)
  • [3] Gus R., Cross L.E., Park S.E., Noheda B., Cox D.E., Shirane G., Origin of the high piezoelectric response in PbZr<sub>1-x</sub>Ti<sub>x</sub>O<sub>3</sub>, Phys. Rev. Lett., 84, 23, pp. 5423-5426, (2000)
  • [4] Kiat J.M., Uesu Y., Dkhil B., Matsuda M., Malibert C., Calvarin G., Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds, Phys. Rev. B., 65, pp. 106-110, (2002)
  • [5] Egerton L., Dillon D.M., Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate, J. Amer. Ceram. Soc., 42, 9, pp. 438-442, (1959)
  • [6] Irle E., Blachnik R., The phase diagrams of Na<sub>2</sub>O and K<sub>2</sub>O with Nb<sub>2</sub>O<sub>5</sub> and the ternary system Nb<sub>2</sub>O<sub>5</sub>-Na<sub>2</sub>O-Y<sub>2</sub>O<sub>3</sub>, Thermochim. Acta., 179, pp. 157-169, (1991)
  • [7] Li E., Kakemoto H., Wada S., Tsurumi T., Influence of CuO on the structure and piezoelectric properties of alkaline niobate-based lead-free ceramics, J. Amer. Ceram. Soc., 90, 6, pp. 1787-1791, (2007)
  • [8] Malic B., Bernard J., Holc J., Jenko D., Kosec M., Alkaline-earth doping in (K,Na)NbO<sub>3</sub> based piezoceramics, J. Eur. Ceram. Soc., 25, 2707, (2005)
  • [9] Park S.H., Ahn C.W., Nahm S., Song J.S., Microstructure and pyroelectric properties of ZnO-added (Na<sub>0.5</sub>K<sub>0.5</sub>)NbO<sub>3</sub> ceramics, Jpn. J. Appl. Phys., 43, 8 B, pp. 1072-1074, (2004)
  • [10] Zuo R., Rodel J., Sintering and electrical properties of lead-free (Na<sub>0.5</sub>K<sub>0.5</sub>)NbO<sub>3</sub> piezoelectric ceramics, J. Amer. Ceram. Soc., 89, 6, pp. 2010-2015, (2006)