A Multi-Model Machine Learning Approach for Monitoring Calories Being Burnt During Workouts Using Smart Calorie Tracer

被引:0
|
作者
Challagundla Y. [1 ]
Badri Narayanan K. [1 ]
Devatha K.S. [2 ]
Bharathi V.C. [1 ]
Ravindra J.V.R. [3 ]
机构
[1] School of Computer Science and Engineering (SCOPE), VIT-AP University, Andhra Pradesh, Amaravati
[2] School of Electronics and Engineering (SENCE), VIT-AP University, Andhra Pradesh, Amaravati
[3] Center for Advanced Computing Research Laboratory (C-ACRL), Department of Electronics and Communication Engineering, Vardhaman College of Engineering, Telangana, Hyderabad
关键词
Calories; Cross-validation; Data visualization; Dataset analysis; Fitness applications; Machine learning; Multi-model approach; Neural network; Workouts;
D O I
10.4108/eetpht.10.5407
中图分类号
学科分类号
摘要
INTRODUCTION: In today's health-conscious world, accurate calorie monitoring during exercise is crucial for achieving fitness goals and maintaining a healthy lifestyle. However, existing methods often lack precision, driving the need for more reliable tracking systems. This paper explores the use of a multi-model machine learning approach to predict calorie burn during workouts by utilizing a comprehensive dataset. OBJECTIVES: The objective of this paper is to develop a user-friendly program capable of accurately predicting calorie expenditure during exercise, leveraging advanced machine learning techniques. METHODS: Techniques from social network analysis were employed to analyze the dataset, which included information on age, gender, height, weight, workout intensity, and duration. Data preprocessing involved handling missing values, eliminating irrelevant columns, and preparing features for analysis. The dataset was then divided into training and testing sets for model development and evaluation. Machine learning models, including Neural Networks, AdaBoost, Random Forest, and Gradient Boosting, were chosen based on their performance in regression tasks. RESULTS: The neural network model demonstrated superior performance in predicting calorie burn, outperforming other models in terms of MSE, RMSE, and an R2 score. Data visualization techniques aided in understanding the relationship between variables and calorie burn, highlighting the effectiveness of the neural network model. CONCLUSION: The findings suggest that a multi-model machine learning approach offers a promising solution for accurate calorie tracking during exercise. The neural network model, in particular, shows potential for developing user-friendly calorie monitoring applications. While limitations exist, such as dataset scope and environmental factors, this study lays the groundwork for future advancements in calorie monitoring and contributes to the development of holistic fitness applications. © 2024 Y. Challagundla et al., licensed to EAI.
引用
收藏
相关论文
共 37 条
  • [1] Advancing flood susceptibility modeling using stacking ensemble machine learning: A multi-model approach
    Yang, Huilin
    Yao, Rui
    Dong, Linyao
    Sun, Peng
    Zhang, Qiang
    Wei, Yongqiang
    Sun, Shao
    Aghakouchak, Amir
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2024, 34 (08) : 1513 - 1536
  • [2] Temperature Prediction for Stored Grain: A Multi-model Fusion Approach Based on Machine Learning
    Chen, Donghao
    Liu, Binkun
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 661 - 665
  • [3] A joint multi-model machine learning prediction approach based on confidence for ship stability
    Jiang, Chaicheng
    Xiang, Xianbo
    Xiang, Gong
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (03) : 3873 - 3890
  • [4] A joint multi-model machine learning prediction approach based on confidence for ship stability
    Chaicheng Jiang
    Xianbo Xiang
    Gong Xiang
    Complex & Intelligent Systems, 2024, 10 : 3873 - 3890
  • [5] A machine learning approach for probabilistic multi-model ensemble predictions of Indian summer monsoon rainfall
    Acharya, Nachiketa
    Hall, Kyle Joseph Chen
    MAUSAM, 2023, 74 (02): : 421 - 428
  • [6] A Machine Learning-Based Approach to Automatic Multi-Model History Matching and Dynamic Prediction
    Feng, Guoqing
    Mo, Haishuai
    Wu, Baofeng
    He, Yujun
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025,
  • [7] An explainable machine learning approach for hospital emergency department visits forecasting using continuous training and multi-model regression
    Pelaez-Rodriguez, C.
    Torres-Lopez, R.
    Perez-Aracil, J.
    Lopez-Laguna, N.
    Sanchez-Rodriguez, S.
    Salcedo-Sanz, S.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 245
  • [8] Identification of Malignancies from Free-Text Histopathology Reports Using a Multi-Model Supervised Machine Learning Approach
    Olago, Victor
    Muchengeti, Mazvita
    Singh, Elvira
    Chen, Wenlong C.
    INFORMATION, 2020, 11 (09)
  • [9] Email-Based Cyberstalking Detection On Textual Data Using Multi-Model Soft Voting Technique Of Machine Learning Approach
    Gautam, Arvind Kumar
    Bansal, Abhishek
    JOURNAL OF COMPUTER INFORMATION SYSTEMS, 2023, 63 (06) : 1362 - 1381
  • [10] A multi-model ensemble approach for reservoir dissolved oxygen forecasting based on feature screening and machine learning
    Zhang, Peng
    Liu, Xinyang
    Dai, Huancheng
    Shi, Chengchun
    Xie, Rongrong
    Song, Gangfu
    Tang, Lei
    ECOLOGICAL INDICATORS, 2024, 166