Controlling friction energy dissipation by ultrafast interlayer electron-phonon coupling in WS2/graphene heterostructures

被引:0
作者
Wang, Chong [1 ]
Han, Rui [1 ]
Wang, Yutang [1 ,2 ]
Chen, Shihong [1 ]
Xu, Haowen [1 ]
Huang, Shuchun [1 ]
Sun, Zejun [1 ]
Li, Zhihong [3 ]
Luo, Jianbin [1 ]
Liu, Dameng [1 ]
Liu, Huan [1 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol Adv Equipment, Beijing 100084, Peoples R China
[2] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
[3] Peking Univ, Sch Integrated Circuits, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Interlayer electron-phonon coupling; Non-contact friction energy dissipation; Defects; Ultrafast spectroscopy; Heterostructures; NANOSCALE FRICTION; GRAPHENE; SUPERLUBRICITY; NANOPARTICLES; DEFECTS; LENGTH;
D O I
10.1016/j.nanoen.2024.110371
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrons and phonons are regarded as the microscopic carriers of friction energy dissipation and their coupling is a typical dissipation mode. However, due to the lack of ultrafast detection technic, the friction mechanism about electron-phonon coupling remains unexplained. Here, using high resolution non-contact atomic force microscopy and ultrafast pump-probe spectroscopy, we find that interlayer electron-phonon coupling dissipation channel in WS2/graphene heterostructures can be enhanced by defects and the electron-phonon scattering time is accelerated from 0.62 ps to 0.27 ps. The enhanced electron-phonon coupling leads to significant energy dissipation. We further quantitatively model the friction with dissipation rate to control the friction energy dissipation by ultrafast interlayer electron-phonon coupling. This work provides a new way to understand the mechanism of electron-phonon coupling in friction.
引用
收藏
页数:7
相关论文
共 56 条
[1]   Defect-Induced Supercollision Cooling of Photoexcited Carriers in Graphene [J].
Alencar, Thonimar V. ;
Silva, Mychel G. ;
Malard, Leandro M. ;
de Paula, Ana M. .
NANO LETTERS, 2014, 14 (10) :5621-5624
[2]   Macroscale superlubricity enabled by graphene nanoscroll formation [J].
Berman, Diana ;
Deshmukh, Sanket A. ;
Sankaranarayanan, Subramanian K. R. S. ;
Erdemir, Ali ;
Sumant, Anirudha V. .
SCIENCE, 2015, 348 (6239) :1118-1122
[3]   Supercollision cooling in undoped graphene [J].
Betz, A. C. ;
Jhang, S. H. ;
Pallecchi, E. ;
Ferreira, R. ;
Feve, G. ;
Berroir, J-M. ;
Placais, B. .
NATURE PHYSICS, 2013, 9 (02) :109-112
[4]   Nanoscale friction varied by isotopic shifting of surface vibrational frequencies [J].
Cannara, Rachel J. ;
Brukman, Matthew J. ;
Cimatu, Katherine ;
Sumant, Anirudha V. ;
Baldelli, Steven ;
Carpick, Robert W. .
SCIENCE, 2007, 318 (5851) :780-783
[5]   Effects of substrate roughness and electron-phonon coupling on thickness-dependent friction of graphene [J].
Dong, Yalin .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (05)
[6]   Probing the Nature of Defects in Graphene by Raman Spectroscopy [J].
Eckmann, Axel ;
Felten, Alexandre ;
Mishchenko, Artem ;
Britnell, Liam ;
Krupke, Ralph ;
Novoselov, Kostya S. ;
Casiraghi, Cinzia .
NANO LETTERS, 2012, 12 (08) :3925-3930
[7]   Friction and Dissipation in Epitaxial Graphene Films [J].
Filleter, T. ;
McChesney, J. L. ;
Bostwick, A. ;
Rotenberg, E. ;
Emtsev, K. V. ;
Seyller, Th. ;
Horn, K. ;
Bennewitz, R. .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[8]   Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures [J].
Froehlicher, Guillaume ;
Lorchat, Etienne ;
Berciaud, Stephane .
PHYSICAL REVIEW X, 2018, 8 (01)
[9]   Photocurrent measurements of supercollision cooling in graphene [J].
Graham, Matt W. ;
Shi, Su-Fei ;
Ralph, Daniel C. ;
Park, Jiwoong ;
McEuen, Paul L. .
NATURE PHYSICS, 2013, 9 (02) :103-108
[10]   Experiments and simulations of the humidity dependence of friction between nanoasperities and graphite: The role of interfacial contact quality [J].
Hasz, Kathryn ;
Ye, Zhijiang ;
Martini, Ashlie ;
Carpick, Robert W. .
PHYSICAL REVIEW MATERIALS, 2018, 2 (12)