Periodic, quasi-periodic, chaotic waves and solitonic structures of coupled Benjamin-Bona-Mahony-KdV system

被引:1
作者
Hussain, Amjad [1 ]
Abbas, Naseem [1 ]
机构
[1] Quaid i Azam Univ 45320, Dept Math, Islamabad 44000, Pakistan
关键词
coupled Benjamin-Bona-Mahony-KdV system; bifurcation diagrams; chaos; solitary wave solutions; BOUSSINESQ SYSTEMS; MODEL;
D O I
10.1088/1402-4896/ad896b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we mainly focus on studying the dynamical behaviour and soliton solution of the coupled Benjamin-Bona-Mahony-Korteweg-de Vries ( BBM-KdV ) system, which characterizes the propagation of long waves in weakly nonlinear dispersive media. The paper utilizes different tools to detect chaos, such as time series analysis, bifurcation diagrams, power spectra, phase portraits, Poincare maps, and Lyapunov exponents. This analysis helps in more accurate predictive modeling of the systems. This understanding can aid in the design of control strategies, resulting in enhancements in prediction, control, optimization, and design. Additionally, we construct the system's solitary wave structures using the Jacobi elliptic function ( JEF ) method. We identify periodic wave solutions expressed in terms of rational, hyperbolic, and trigonometric functions. Certain parameter values can lead to periodic wave solutions, solitary waves ( bell-shaped solitons), shock wave solutions ( kink- soliton and double wave solutions.
引用
收藏
页数:20
相关论文
共 24 条
  • [1] Influence of parametric forcing on the nonequilibrium dynamics of wave patterns
    Abarzhi, S. I.
    Desjardins, O.
    Nepomnyashchy, A.
    Pitsch, H.
    [J]. PHYSICAL REVIEW E, 2007, 75 (04):
  • [2] Bifurcation analysis, quasi-periodic and chaotic behavior of generalized Pochhammer-Chree equation
    Abbas, Naseem
    Hussain, Amjad
    Khan, Aziz
    Abdeljawad, Thabet
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (08)
  • [3] Novel soliton structures and dynamical behaviour of coupled Higgs field equations
    Abbas, Naseem
    Hussain, Amjad
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (04)
  • [4] Bifurcation, phase plane analysis and exact soliton solutions in the nonlinear Schrodinger equation with Atangana's conformable derivative
    Alam, Md. Nur
    Iqbal, Mujahid
    Hassan, Mohammad
    Fayz-Al-Asad, Md.
    Hossain, Muhammad Sajjad
    Tunc, Cemil
    [J]. CHAOS SOLITONS & FRACTALS, 2024, 182
  • [5] Analysis of chaotic structures, bifurcation and soliton solutions to fractional Boussinesq model
    Ali, Asghar
    Ahmad, Jamshad
    Javed, Sara
    Shafqat-Ur-Rehman
    [J]. PHYSICA SCRIPTA, 2023, 98 (07)
  • [6] Numerical solution of Boussinesq systems of the Bona-Smith family
    Antonopoulos, D. C.
    Dougalis, V. A.
    Mitsotakis, D. E.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2010, 60 (04) : 314 - 336
  • [7] MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS
    BENJAMIN, TB
    BONA, JL
    MAHONY, JJ
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) : 47 - +
  • [8] Boussinesq Systems of Bona-Smith Type on Plane Domains: Theory and Numerical Analysis
    Dougalis, V. A.
    Mitsotakis, D. E.
    Saut, J. -C.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 44 (02) : 109 - 135
  • [9] Qualitative analysis and new soliton solutions for the coupled nonlinear Schrodinger type equations
    Elbrolosy, M. E.
    [J]. PHYSICA SCRIPTA, 2021, 96 (12)
  • [10] Dynamical behaviour of nondissipative double dispersive microstrain wave in the microstructured solids
    Elbrolosy, M. E.
    Elmandouh, A. A.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (09)