Oxygen vacancy-dependent low-temperature performance of Ni/CeO2 in CO2 methanation

被引:4
|
作者
Liao, Luliang [2 ]
Wang, Kunlei [1 ]
Liao, Guangfu [3 ]
Nawaz, Muhammad Asif [4 ]
Liu, Kun [1 ]
机构
[1] Nanchang Univ, Sch Resources & Environm, 999 Xuefu Rd, Nanchang 330031, Jiangxi, Peoples R China
[2] Jiangxi Sci Technol Normal Univ, Nanchang, Jiangxi, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Mat Engn, Fuzhou 350002, Peoples R China
[4] Univ Seville, Inst Seville ICMSE, CSIC, Dept Inorgan Chem & Mat Sci, Seville 41092, Spain
基金
中国国家自然科学基金;
关键词
X-RAY-DIFFRACTION; CARBON-DIOXIDE; HETEROGENEOUS CATALYSTS; LATTICE CAPACITY; SOLID-SOLUTION; METAL-OXIDE; HYDROGENATION; METHANOL; CERIA; ACTIVATION;
D O I
10.1039/d4cy00679h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The transformative power of CO2 methanation can efficiently transform greenhouse gases into high-value products, aligning with the carbon neutrality goals. However, achieving this target at low temperature requires cumbersome efforts in designing catalysts that possess high reactivity and selectivity. Focusing on understanding the pivotal role of alkaline (such as Ca) sites in catalyzing these reactions at lower temperature could be a way of strategically creating oxygen vacancies with varying activity gradients. Designing CaCe-SG via a sol-gel method in the current study to integrate Ca into the CeO2 lattice marked the highly active moderate-strength alkaline centers which resulted in the intrinsic activity soaring by an impressive 400% compared to the conventional Ni/CeO2 catalysts. Supported by H-2-TPD, Raman, and XPS analyses, a crucial revelation was unveiled where Ca modification induced a surge in the dispersion of active Ni species on Ni/CaCe-SG catalysts, thereby enhancing the abundant surface oxygen vacancies. In situ infrared spectroscopy further confirmed that the modified catalyst diligently followed the reaction pathway of CO3H* -> HCOO* -> CH4, culminating in the CO2 methanation activity with a low-temperature catalyst via the meticulous optimization of synthesis methods that propelled the process forward to the anticipated oxygen vacancy-induced moderate-strength alkaline centers.
引用
收藏
页码:6537 / 6549
页数:13
相关论文
共 50 条
  • [41] CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2
    Wang, Xiaoliu
    Zhu, Lingjun
    Liu, Yincong
    Wang, Shurong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 625 : 686 - 695
  • [42] Boosting CO2 methanation via tuning metal-support interaction over hollow Ni/CeO2
    Gao, Pengju
    Tang, Shixiong
    Han, Xiaoyu
    Hao, Ziwen
    Chen, Jiyi
    Pan, Yutong
    Zhang, Zhenmei
    Zhang, Heng
    Zi, Xiaohui
    Chen, Luwei
    Li, Maoshuai
    Ma, Xinbin
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [43] Recent Research Trends in CO2 Methanation Catalysts: Focusing on Ni/CeO2
    Lee, Ye Hwan
    Jeong, Hyeonsu
    Kim, Sung Su
    APPLIED CHEMISTRY FOR ENGINEERING, 2024, 35 (06): : 491 - 501
  • [44] Tailoring metal-support interactions via tuning CeO2 particle size for enhancing CO2 methanation activity over Ni/CeO2 catalysts
    Lin, Shuangxi
    Li, Zhenhua
    Li, Maoshuai
    FUEL, 2023, 333
  • [45] Support-induced modifications on the CO2 hydrogenation performance of Ni/CeO2: The effect of ZnO doping on CeO2 nanorods
    Varvoutis, Georgios
    Karakoulia, Stamatia A.
    Lykaki, Maria
    Stefa, Sofia
    Binas, Vassilios
    Marnellos, George E.
    Konsolakis, Michalis
    JOURNAL OF CO2 UTILIZATION, 2022, 61
  • [46] Enhanced low-temperature CO2 methanation performance of Ni/ZrO2 catalysts via a phase engineering strategy
    Ma, Lixuan
    Ye, Runping
    Huang, Yuanyuan
    Reina, Tomas Ramirez
    Wang, Xinyao
    Li, Congming
    Zhang, Xiao Li
    Fan, Maohong
    Zhang, Riguang
    Liu, Jian
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [47] Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: tailoring the Ni-CeO2 contact
    Cárdenas-Arenas A.
    Quindimil A.
    Davó-Quiñonero A.
    Bailón-García E.
    Lozano-Castelló D.
    De-La-Torre U.
    Pereda-Ayo B.
    González-Marcos J.A.
    González-Velasco J.R.
    Bueno-López A.
    Bailón-García, E. (estherbg@ugr.es), 1600, Elsevier Ltd (19):
  • [48] Structure-Sensitivity of CO2 Methanation over Nanostructured Ni Supported on CeO2 Nanorods
    Marconi, Eleonora
    Tuti, Simonetta
    Luisetto, Igor
    CATALYSTS, 2019, 9 (04):
  • [49] Combustion-impregnation preparation of Ni/SiO2 catalyst with improved low-temperature activity for CO2 methanation
    Xu, Yan
    Wu, Yingquan
    Li, Jing
    Wei, Shuai
    Gao, Xinhua
    Wang, Peng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (40) : 20919 - 20929
  • [50] Ni nanocatalysts supported on mesoporous Al2O3-CeO2 for CO2 methanation at low temperature
    Wu, Yushan
    Lin, Jianghui
    Ma, Guangyuan
    Xu, Yanfei
    Zhang, Jianli
    Samart, Chanatip
    Ding, Mingyue
    RSC ADVANCES, 2020, 10 (04) : 2067 - 2072