共 19 条
[1]
Tokozume Y., Ushiku Y., Harada T., Learning from between- class examples for deep sound recognition, Proc. of the 6th Intl. Conf. on Learning Representations, Vancouver, Canada, pp. 1-13, (2018)
[2]
Takahashi R., Matsubara T., Uehara Ricap K., Random image cropping and patching data augmentation for deep CNNs, Proc. Of the 10th Asian Conf. on Machine Learning, Beijing, China, pp. 786-798, (2018)
[3]
Goodfellow I.J., Pouget-Abadie J., Mirza M., Et al., Generative adversarial nets, Proc. of the 27th Intl. Conf. on Neural Information Processing Systems, Montreal, Canada, pp. 2672-2680, (2014)
[4]
Antoniou A., Storkey A., Edwards H., Data Augmentation Generative Adversarial Networks
[5]
Lake B.M., Salakhutdinov R., Tenenbaum J.B., Human-level concept learning through probabilistic program induction, Science, 350, 6266, pp. 1332-1338, (2015)
[6]
Radford A., Metz L., Chintala S., Unsupervised representation learning with deep convolutional generative adversarial networks, Proc. Of the 4th Intl. Conf. on Learning Representations, San Juan, America, pp. 1-15, (2016)
[7]
Frid-Adar M., Klang E., Amitai M., Goldberger J., Greenspan H., Synthetic data augmentation using GAN for improved liver lesion classification, Proc. Of the 15th IEEE Intl. Symp. on Biomedical Imaging, Washington, America, pp. 289-293, (2018)
[8]
Han C., Murao K., Noguchi T., Et al., Learning more with less: conditional PGGAN-based data augmentation for brain metastases detection using highly-rough annotation on MR images, in: Proc. of the 28th ACM International Conference on Information and Knowledge Management (CIKM’19), pp. 119-127, (2019)
[9]
Redmon J., Farhadi A., YOLOv3: an Incremental Improvement
[10]
Zhu X.-Y., Liu Y.-F., Li J.-H., Wan T., Qin Z.-C., Emotion classification with data augmentation using generative adversarial network, Proc. Of the 22nd Pacific-Asia Conf. on Knowledge Discovery and Data Mining, Melbourne, Australia, pp. 349-360, (2018)