Synthesis and electrochemical properties of MnO2 hollow nanospheres

被引:0
|
作者
Wang, Xiaoli [1 ]
Zheng, Yuying [1 ]
Liu, Xianbin [1 ]
机构
[1] School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian
来源
Huagong Xuebao/CIESC Journal | 2015年 / 66卷 / 03期
关键词
Electrochemistry; Hydrothermal; Manganese dioxide; Nanostructure; Supercapacitor;
D O I
10.11949/j.issn.0438-1157.20141446
中图分类号
学科分类号
摘要
Electrode material of MnO2 hollow nanosphere was synthesized via a simple hydrothermal process in the presence of Ce ion. Ce ion played a crucial role in controlling the morphology and crystalline structure of MnO2. The hollow nanosphere consisted of nanorods, and Brunauer-Emmet-Teller (BET) specific surface area of the hollow nanosphere was 315.2 m2·g-1. Electrochemical behavior of MnO2 electrode material was measured by cyclic voltammetry and galvanostatic charge-discharge. Better electrochemical properties of MnO2 electrode could be obtained when mole ratio of Ce to Mn was 0.2, and specific capacitance of as-prepared MnO2 electrode was 178.6 F·g-1, 2.6 times higher than MnO2 electrode without Ce ions. Moreover, MnO2 electrode exhibited remarkable cyclability, and specific capacitance retained 90.5% even after 1000 cycles. Ce ion was favorable for forming a hollow structure, and improved specific capacitance of MnO2 electrode. ©, 2015, Chemical Industry Press. All right reserved.
引用
收藏
页码:1201 / 1207
页数:6
相关论文
共 23 条
  • [1] Lee S.W., Kim J., Chen S., Hammond P.T., Shao-Horn Y., Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors, ACS Nano, 4, 7, pp. 3889-3896, (2010)
  • [2] Wang G., Zhang L., Zhang J., A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews, 41, 2, pp. 797-828, (2012)
  • [3] Hu C.C., Chen W.C., Chang K.H., How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, Journal of Electrochemical Society, 151, 2, pp. A281-A290, (2004)
  • [4] Zhu T., Chen J.S., Lou X.W., Shape-controlled synthesis of porous Co<sub>3</sub>O<sub>4</sub> nanostructures for application in supercapacitors, Journal of Materials Chemistry, 20, 33, pp. 7015-7020, (2010)
  • [5] Qu Q., Zhang P., Wang B., Chen Y., Tian S., Wu Y., Holze R., Electrochemical performance of MnO<sub>2</sub> nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors, Journal of Physical Chemistry C, 113, 31, pp. 14020-14027, (2009)
  • [6] Zhang X., Shi W., Zhu J., Zhao W., Ma J., Mhaisalkar S., Maria T.L., Yang Y., Zhang H., Hng H.H., Yan Q., Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes, Nano Research, 3, 9, pp. 643-652, (2010)
  • [7] Duan X., Yang J., Gao H., Ma J., Jiao L., Zheng W., Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties, Cryst. Eng. Comm., 14, 12, (2012)
  • [8] Bae K.H., Lee K., Kim C., Park T.G., Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging, Biomaterials, 32, 1, pp. 176-184, (2011)
  • [9] Tang X., Liu Z., Zhang C., Yang Z., Wang Z., Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area, Journal of Power Sources, 193, 2, pp. 939-943, (2009)
  • [10] Wang N., Gao Y., Gong J., Ma X., Zhang X., Guo Y., Qu L., Synthesis of manganese oxide hollow urchins with a reactive template of carbon spheres, European Journal of Inorganic Chemistry, 2008, 24, pp. 3827-3832, (2008)