Compact-like pulse signals in a new nonlinear electrical transmission line

被引:0
作者
Laboratoire de Mécanique, Faculté des Sciences, Université de Yaoundé I, B.P. 812, Yaoundé, Cameroon [1 ]
不详 [2 ]
不详 [3 ]
机构
[1] Laboratoire de Mécanique, Faculté des Sciences, Université de Yaoundé I, B.P. 812, Yaoundé
[2] Laboratoire de Mécanique et de Modélisation des Systèmes Physiques L2MSP, Facultédes Sciences, Universitéde Dschang, B.P. 067, Dschang
[3] Le2i, Universitéde Bourgogne, UMR CNRS 5158, Ailes Sciences de l'Ingénieur, Boite Postale 47870
来源
Prog. Electromagn. Res. B | / 52卷 / 207-236期
关键词
D O I
10.2528/PIERB13030207
中图分类号
学科分类号
摘要
A nonlinear electrical transmission line with an intersite circuit element acting as a nonlinear resistance is introduced and investigated. In the continuum limit, the dynamics of localized signals is described by a nonlinear evolution equation belonging to the family of nonlinear diffusive Burgers' equations. This equation admits compact pulse solutions and shares some symmetry properties with the Rosenau-Hyman K(2; 2) equation. An exact discrete compactly-supported signal voltage is found for the network and the dissipative effects on the pulse motion analytically studied. Numerical simulations confirm the validity of analytical results and the robustness of these compact pulse signals which may have important applications in signal processing systems.
引用
收藏
页码:207 / 236
页数:29
相关论文
共 50 条