Review of vortex beam orbital angular momentum mode detection methods

被引:2
作者
Lv, Jiangtao [1 ,2 ]
Liu, Chunli [1 ,2 ]
Shen, Mengzhe [3 ]
Wang, Dapeng [3 ]
Si, Guangyuan [4 ]
Ou, Qingdong [5 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
[2] Hebei Key Lab Micronano Precis Opt Sensing & Measu, Qinhuangdao 066004, Peoples R China
[3] BGI Res, Inst Biointelligence Technol, Shenzhen 518083, Peoples R China
[4] Melbourne Ctr Nanofabricat, Victorian Node Australian Natl Fabricat Facil, Clayton, Vic 3168, Australia
[5] Macau Univ Sci & Technol, Macao Inst Mat Sci & Engn MIMSE, Fac Innovat Engn, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
Orbital angular momentum; Vortex beams; Free-space optical communication; Deep neural networks; Turbulence; ATMOSPHERIC-TURBULENCE COMPENSATION; DEEP NEURAL-NETWORKS; OPTICAL VORTICES; TOPOLOGICAL CHARGE; LIGHT-BEAMS; DIFFRACTION; PERFORMANCE; GENERATION; STATES; TRANSFORMATION;
D O I
10.1016/j.mtcomm.2024.109767
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Orbital angular momentum (OAM) is a new physical dimension that has revolutionized optical communication. This paper presents the common vortex beams (VBs) and the state-of-the-art methods for detecting their OAM modes. We show how machine learning can overcome the limitations of traditional OAM pattern recognition methods, such as their low accuracy and inability to handle fractional or mixed orders. We use neural networks to extract the features of the samples and perform pattern recognition and classification. We also discuss the application of deep neural networks in OAM pattern recognition, considering the neural network architecture and the beam propagation disturbance. Furthermore, we introduce the OAM coding encryption based on neural networks. This paper demonstrates how technological advances can improve the quality and speed of free-space optical communication systems.
引用
收藏
页数:23
相关论文
共 153 条
[31]   Single-slit diffraction of an optical beam with phase singularity [J].
Ghai, Devinder Pal ;
Senthilkumaran, P. ;
Sirohi, R. S. .
OPTICS AND LASERS IN ENGINEERING, 2009, 47 (01) :123-126
[32]   Free-space information transfer using light beams carrying orbital angular momentum [J].
Gibson, G ;
Courtial, J ;
Padgett, MJ ;
Vasnetsov, M ;
Pas'ko, V ;
Barnett, SM ;
Franke-Arnold, S .
OPTICS EXPRESS, 2004, 12 (22) :5448-5456
[33]   Quantum formulation of fractional orbital angular momentum [J].
Goette, J. B. ;
Franke-Arnold, S. ;
Zambrini, R. ;
Barnett, Stephen M. .
JOURNAL OF MODERN OPTICS, 2007, 54 (12) :1723-1738
[34]   BESSEL-GAUSS BEAMS [J].
GORI, F ;
GUATTARI, G ;
PADOVANI, C .
OPTICS COMMUNICATIONS, 1987, 64 (06) :491-495
[35]   Generation of fractional ellipse perfect vector beams [J].
Gu, Fengyan ;
Li, Lin ;
Chang, Chenliang ;
Yuan, Caojin ;
Feng, Shaotong ;
Nie, Shouping ;
Ding, Jianping .
OPTICS COMMUNICATIONS, 2019, 443 :44-47
[36]   Characterizing topological charge of optical vortices by using an annular aperture [J].
Guo, Cheng-Shan ;
Lu, Lei-Lei ;
Wang, Hui-Tian .
OPTICS LETTERS, 2009, 34 (23) :3686-3688
[37]   Simple-Diffraction-Based Deep Learning to Reconstruct a High-Dimensional Orbital-Angular-Momentum Spectrum Via Single-Shot Measurement [J].
Guo, Haoxu ;
Qiu, Xiaodong ;
Chen, Lixiang .
PHYSICAL REVIEW APPLIED, 2022, 17 (05)
[38]   Atmospheric turbulence compensation for OAM-carrying vortex waves based on convolutional neural network [J].
Guo, Jianwen ;
Shi, Hongyin ;
Yang, Ting ;
Lv, Chunyang ;
Qiao, Zhijun .
ADVANCES IN SPACE RESEARCH, 2022, 69 (05) :1949-1959
[39]   Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation [J].
Guo, Yinghui ;
Zhang, Shicong ;
Pu, Mingbo ;
He, Qiong ;
Jin, Jinjin ;
Xu, Mingfeng ;
Zhang, Yaxin ;
Gao, Ping ;
Luo, Xiangang .
LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
[40]   Nondiffracting vortex beams with continuous orbital angular momentum order dependence [J].
Gutierrez-Vega, Julio C. ;
Lopez-Mariscal, Carlos .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2008, 10 (01)