Review of vortex beam orbital angular momentum mode detection methods

被引:2
作者
Lv, Jiangtao [1 ,2 ]
Liu, Chunli [1 ,2 ]
Shen, Mengzhe [3 ]
Wang, Dapeng [3 ]
Si, Guangyuan [4 ]
Ou, Qingdong [5 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
[2] Hebei Key Lab Micronano Precis Opt Sensing & Measu, Qinhuangdao 066004, Peoples R China
[3] BGI Res, Inst Biointelligence Technol, Shenzhen 518083, Peoples R China
[4] Melbourne Ctr Nanofabricat, Victorian Node Australian Natl Fabricat Facil, Clayton, Vic 3168, Australia
[5] Macau Univ Sci & Technol, Macao Inst Mat Sci & Engn MIMSE, Fac Innovat Engn, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
Orbital angular momentum; Vortex beams; Free-space optical communication; Deep neural networks; Turbulence; ATMOSPHERIC-TURBULENCE COMPENSATION; DEEP NEURAL-NETWORKS; OPTICAL VORTICES; TOPOLOGICAL CHARGE; LIGHT-BEAMS; DIFFRACTION; PERFORMANCE; GENERATION; STATES; TRANSFORMATION;
D O I
10.1016/j.mtcomm.2024.109767
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Orbital angular momentum (OAM) is a new physical dimension that has revolutionized optical communication. This paper presents the common vortex beams (VBs) and the state-of-the-art methods for detecting their OAM modes. We show how machine learning can overcome the limitations of traditional OAM pattern recognition methods, such as their low accuracy and inability to handle fractional or mixed orders. We use neural networks to extract the features of the samples and perform pattern recognition and classification. We also discuss the application of deep neural networks in OAM pattern recognition, considering the neural network architecture and the beam propagation disturbance. Furthermore, we introduce the OAM coding encryption based on neural networks. This paper demonstrates how technological advances can improve the quality and speed of free-space optical communication systems.
引用
收藏
页数:23
相关论文
共 153 条
[1]   Propagation of optical vortices with fractional topological charge in free space [J].
Ali, Tamelia ;
Kreminska, Liubov ;
Golovin, Andrii B. ;
Crouse, David T. .
LASER BEAM SHAPING XV, 2014, 9194
[2]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[3]   Angular Momentum of Topologically Structured Darkness [J].
Alperin, Samuel N. ;
Siemens, Mark E. .
PHYSICAL REVIEW LETTERS, 2017, 119 (20)
[4]   Atoms in complex twisted light [J].
Babiker, Mohamed ;
Andrews, David L. ;
Lembessis, Vassilis E. .
JOURNAL OF OPTICS, 2019, 21 (01)
[5]   Underwater turbulence, its effects on optical wireless communication and imaging: A review [J].
Baykal, Yahya ;
Ata, Yalcin ;
Gokce, Muhsin C. .
OPTICS AND LASER TECHNOLOGY, 2022, 156
[6]   Efficient Sorting of Orbital Angular Momentum States of Light [J].
Berkhout, Gregorius C. G. ;
Lavery, Martin P. J. ;
Courtial, Johannes ;
Beijersbergen, Marco W. ;
Padgett, Miles J. .
PHYSICAL REVIEW LETTERS, 2010, 105 (15)
[7]   Optical vortices evolving from helicoidal integer and fractional phase steps [J].
Berry, MV .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2004, 6 (02) :259-268
[8]   Machine learning based accurate recognition of fractional optical vortex modes in atmospheric environment [J].
Cao, Meng ;
Yin, Yaling ;
Zhou, Jingwen ;
Tang, Jihong ;
Cao, Luping ;
Xia, Yong ;
Yin, Jianping .
APPLIED PHYSICS LETTERS, 2021, 119 (14)
[9]   On-chip orbital angular momentum detection using a catenary grating metasurface [J].
Chen, Panpan ;
Chen, Cong ;
Xi, Jianxin ;
Du, Xiang ;
Liang, Li ;
Mi, Jiajia ;
Shi, Jianping .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (07)
[10]   Measurement of Orbital Angular Momentum by Self-Interference Using a Plasmonic Metasurface [J].
Chen, Xiaolin ;
Zhou, Hailong ;
Liu, Mian ;
Dong, Jianji .
IEEE PHOTONICS JOURNAL, 2016, 8 (01)