机构:
Hangzhou Dianzi Univ, Dept Automat, Hangzhou 310038, Peoples R ChinaHangzhou Dianzi Univ, Dept Automat, Hangzhou 310038, Peoples R China
Zeng, Pingliang
[1
]
Ren, Pengzhe
论文数: 0引用数: 0
h-index: 0
机构:
State Grid Zhejiang Elect Power Co, Jiaxing Power Supply Co, Jiaxing 314000, Peoples R ChinaHangzhou Dianzi Univ, Dept Automat, Hangzhou 310038, Peoples R China
Solid modeling;
Accuracy;
Wind speed;
Wind farms;
Wind power generation;
Predictive models;
Feature extraction;
Wind turbines;
Convolutional neural networks;
Wind forecasting;
Wind farm;
wind power prediction;
wake effect;
3D-Gaussian Frandsen model;
spatial-temporal distribution of wind speed;
SIMULATION;
NETWORK;
MODEL;
D O I:
10.23919/PCMP.2023.000221
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
With significant expansion in wind farm capacity, wake disturbances from upstream wind turbines have emerged as a detrimental factor, adversely affecting the generated power of downstream units. However, the conventional power prediction models usually neglect the wake effect between adjacent wind turbines. To bridge this gap, this paper proposes a novel power prediction model that considers the wake effect and its boundary layer compensation, to enable joint spatial and temporal wind power prediction for wind farms. Firstly, a two-dimensional convolutional neural network is adopted to extract the key features and reconstruct wind power prediction data. Secondly, utilizing historical data, a long short-term memory algorithm is employed to investigate the correlation between elemental characteristics and wind data. Subsequently, a 3D-Gaussian Frandsen wake model that accounts for the wake effect and boundary layer compensation in wind farms is developed to precisely calculate the spatial wind speed distributions. Consequently, these distributions allow the power outputs of wind tur-bines in wind farms to be estimated more accurately via the rotor equivalent wind speed. Finally, several case studies are conducted to validate the effectiveness of the proposed method. The results demonstrate that the suggested approach yields favorable outcomes in predicting both wind speed and wind power.
机构:
Royal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, NetherlandsRoyal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, Netherlands
Bakker, Kilian
;
Whan, Kirien
论文数: 0引用数: 0
h-index: 0
机构:
Royal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, NetherlandsRoyal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, Netherlands
Whan, Kirien
;
Knap, Wouter
论文数: 0引用数: 0
h-index: 0
机构:
Royal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, NetherlandsRoyal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, Netherlands
Knap, Wouter
;
Schmeits, Maurice
论文数: 0引用数: 0
h-index: 0
机构:
Royal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, NetherlandsRoyal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, Netherlands
机构:
Royal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, NetherlandsRoyal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, Netherlands
Bakker, Kilian
;
Whan, Kirien
论文数: 0引用数: 0
h-index: 0
机构:
Royal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, NetherlandsRoyal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, Netherlands
Whan, Kirien
;
Knap, Wouter
论文数: 0引用数: 0
h-index: 0
机构:
Royal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, NetherlandsRoyal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, Netherlands
Knap, Wouter
;
Schmeits, Maurice
论文数: 0引用数: 0
h-index: 0
机构:
Royal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, NetherlandsRoyal Netherlands Meteorol Inst KNMI, POB 201, NL-3730 AE De Bilt, Netherlands