Video coding: Part II of fundamentals of source and video coding

被引:9
作者
Schwarz H. [1 ]
Wiegand T. [1 ,2 ]
机构
[1] Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute
[2] Berlin Institute of Technology and Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute
来源
| 1600年 / Now Publishers Inc卷 / 10期
关键词
Codes (symbols) - Computer graphics - Efficiency - Multimedia systems - Signal encoding - Video signal processing - Forecasting;
D O I
10.1561/2000000078
中图分类号
学科分类号
摘要
Digital video coding technologies have become an integral part of the way we create, communicate, and consume visual information. In the first part of this two-part text, we introduced the fundamental source coding techniques entropy coding, quantization, prediction, and transform coding. The present second part describes the application of these techniques to video coding. We introduce the basic design of hybrid video encoders and decoders, explain the basic concepts of intra-picture coding, motion-compensated prediction, and prediction error coding, and discuss encoder optimization techniques. Special emphasis is put on a fair analysis of various design aspects and coding tools in terms of coding efficiency.We highlight the application of the discussed concepts in modern video coding standards and compare important standards with respect to the achievable coding efficiency. © 2016 H. Schwarz and T. Wiegand.
引用
收藏
页码:1 / 346
页数:345
相关论文
共 222 条
  • [1] Acqualagna L., Bosse S., Porbadnigk A.K., Curio G., Muller K.-R., Wiegand T., Blankertz B., EEG-based classification of video quality perception using steady state visual evoked potentials (SSVEPs), Journal of Neural Engineering, 12, 2, (2015)
  • [2] Ahmed N., Natarajan T., Rao K.R., Discrete Cosine Transform, IEEE Transactions on Computers, C-23, 1, pp. 90-93, (1974)
  • [3] Akyol E., Rose K., A necessary and sufficient condition for transform optimality in source coding, Proc. of International Symposium on Information Theory (ISIT), pp. 2597-2601, (2011)
  • [4] Andrews H.C., Pratt W.K., Fourier transform coding of images, Proc. Hawaii Int. Conf. System Sciences, pp. 677-679, (1968)
  • [5] Archer C., Leen T.K., A generalized Lloyd-type algorithm for adaptive transform coder design, IEEE Transactions on Signal Processing, 52, 1, pp. 255-264, (2004)
  • [6] Arnold S.E.J., Faruq S., Savolainen V., McOwan P.W., Chittka L., FReD: The Floral Reflectance Database - A Web Portal for Analyses of Flower Colour, PLoS ONE, 5, 12, (2010)
  • [7] Barten P.G.J., Spatiotemporal model for the contrast sensitivity of the human eye and its temporal aspects, Proc. of SPIE, Human Vision, Visual Processing, and Digital Display IV, 1913, pp. 2-14, (1993)
  • [8] Barten P.G.J., Contrast Sensitivity of the Human Eye and Its Effects on Image Quality, (1999)
  • [9] Barten P.G.J., Formula for the contrast sensitivity of the human eye, Proc. of SPIE, Image Quality and System Performance, 5294, pp. 231-238, (2003)
  • [10] Baylor D.A., Nunn B.J., Schnapf J.L., Spectral sensitivity of cones of the monkey macaca fascicularis, The Journal of Physiology, 390, 1, pp. 145-160, (1987)