Solitary wave solutions and their limits to the fractional Schrödinger system

被引:0
作者
Fu, Guoyi [1 ,2 ]
Chen, Xiaoyan [1 ,2 ]
Zhu, Shihui [1 ,2 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610066, Peoples R China
关键词
Conformable fractional Schr & ouml; dinger system; Dynamic system method; Solitary wave solution; Linear stability; MECHANICS;
D O I
10.1016/j.wavemoti.2024.103416
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This study is concerned with solitary wave solutions and the dynamic behavior of the (2+1)- dimensional nonlinear fractional Schrodinger system. By exploring the dynamic properties of the equilibrium levels to the corresponding Hamiltonian, the expressions of exact solutions of the above system are obtained, including solitary wave solutions, periodic wave solutions, singular periodic wave solutions, singular wave solutions, kink wave solutions, and anti-kink wave solutions. Moreover, the linear stability, geometric characteristics, and limiting behavior of these solutions to the nonlinear fractional Schrodinger system were investigated.
引用
收藏
页数:19
相关论文
共 39 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]  
Ablowitz MJ., 1991, SOLITONS NONLINEAR E, DOI 10.1017/CBO9780511623998
[3]   Abundant optical soliton solutions for an integrable (2+1)-dimensional nonlinear conformable Schrodinger system [J].
Akinyemi, Lanre ;
Senol, Mehmet ;
Rezazadeh, Hadi ;
Ahmad, Hijaz ;
Wang, Hao .
RESULTS IN PHYSICS, 2021, 25
[4]   Properties of the Katugampola fractional derivative with potential application in quantum mechanics [J].
Anderson, Douglas R. ;
Ulness, Darin J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (06)
[5]   A variety of exact optical soliton solutions to the generalized (2+1)-dimensional dynamical conformable fractional Schrodinger model [J].
Bilal, Muhammad ;
Ahmad, Jamshad .
RESULTS IN PHYSICS, 2022, 33
[6]   Fractional Newton mechanics with conformable fractional derivative [J].
Chung, Won Sang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 :150-158
[7]   Modulational instability in a PT-symmetric vector nonlinear Schrodinger system [J].
Cole, J. T. ;
Makris, K. G. ;
Musslimani, Z. H. ;
Christodoulides, D. N. ;
Rotter, S. .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 336 :53-61
[8]   The first integral method for Wu-Zhang system with conformable time-fractional derivative [J].
Eslami, Mostafa ;
Rezazadeh, Hadi .
CALCOLO, 2016, 53 (03) :475-485
[9]   Higher-order rogue waves and modulation instability of the two-component derivative nonlinear Schrodinger equation [J].
Guo, Lijuan ;
Wang, Lihong ;
Cheng, Yi ;
He, Jingsong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 79
[10]   Analytical study of conformable fractional Bohr Hamiltonian with Kratzer potential [J].
Hammad, M. M. ;
Yaqut, A. Sh ;
Abdel-Khalek, M. A. ;
Doma, S. B. .
NUCLEAR PHYSICS A, 2021, 1015