Systematic literature review on the application of machine learning for the prediction of properties of different types of concrete

被引:0
|
作者
Hassan S.I. [1 ,2 ]
Syed S.A. [3 ]
Ali S.W. [3 ]
Zahid H. [4 ]
Tariq S. [5 ]
ud M.M.S. [6 ]
Alam M.M. [7 ]
机构
[1] Electrical/Electronic Engineering, British Malaysian Institute, Universiti of Kuala Lumpur, Kuala Lumpur
[2] Electrical Engineering, Ziauddin University, Sindh, Karachi
[3] Biomedical Engineering, Sir Syed University of Engineering and Technology, Sindh, Karachi
[4] Biomedical Engineering, Ziauddin University, Sindh, Karachi
[5] Civil Engineering, Ziauddin University, Sindh, Karachi
[6] Faculty of Computing and Informatics, Multimedia University, Selangor, Cyberjaya
[7] Faculty of Computing, Riphah International University, Islamabad
关键词
Artificial intelligence; Compressive strength; Computer vision; Concrete; Durability; Machine learning; Mechanical properties; Neural network;
D O I
10.7717/PEERJ-CS.1853
中图分类号
学科分类号
摘要
Background. Concrete, a fundamental construction material, stands as a significant consumer of virgin resources, including sand, gravel, crushed stone, and fresh water. It exerts an immense demand, accounting for approximately 1.6 billion metric tons of Portland and modified Portland cement annually. Moreover, addressing extreme conditions with exceptionally nonlinear behavior necessitates a laborious calibration procedure in structural analysis and design methodologies. These methods are also difficult to execute in practice. To reduce time and effort, ML might be a viable option. Material and Methods. A set of keywords are designed to perform the search PubMed search engine with filters to not search the studies below the year 2015. Furthermore, using PRISMA guidelines, studies were selected and after screening, a total of 42 studies were summarized. The PRISMA guidelines provide a structured framework to ensure transparency, accuracy, and completeness in reporting the methods and results of systematic reviews and meta-analyses. The ability to methodically and accurately connect disparate parts of the literature is often lacking in review research. Some of the trickiest parts of original research include knowledge mapping, co-citation, and cooccurrence. Using this data, we were able to determine which locations were most active in researching machine learning applications for concrete, where the most influential authors were in terms of both output and citations and which articles garnered the most citations overall. Conclusion. ML has become a viable prediction method for a wide variety of structural industrial applications, and hence it may serve as a potential successor for routinely used empirical model in the design of concrete structures. The non-ML structural engineering community may use this overview ofMLmethods, fundamental principles, access codes, ML libraries, and gathered datasets to construct their own ML models for useful uses. Structural engineering practitioners and researchers may benefit from this article’s incorporation of concrete ML studies as well as structural engineering datasets. The construction industry stands to benefit from the use of machine learning in terms of cost savings, time savings, and labor intensity. The statistical and graphical representation of contributing authors and participants in this work might facilitate future collaborations and the sharing of novel ideas and approaches among researchers and industry professionals. The limitation of this systematic review is that it is only PubMed based which means it includes studies included in the PubMed database. © (2024), Hassan et al.
引用
收藏
相关论文
共 50 条
  • [31] Application of artificial intelligence and machine learning technology for the prediction of postmortem interval: A systematic review of preclinical and clinical studies
    Sharma, Rishi
    Diksha
    Bhute, Ashish Ramesh
    Bastia, Binaya Kumar
    FORENSIC SCIENCE INTERNATIONAL, 2022, 340
  • [32] Machine Learning and Surgical Outcomes Prediction: A Systematic Review
    Elfanagely, Omar
    Toyoda, Yoshilzo
    Othman, Sammy
    Mellia, Joseph A.
    Basta, Marten
    Liu, Tony
    Kording, Konrad
    Ungar, Lyle
    Fischer, John P.
    JOURNAL OF SURGICAL RESEARCH, 2021, 264 : 346 - 361
  • [33] Advanced machine learning techniques for predicting concrete mechanical properties: a comprehensive review of models and methodologies
    Li, Fangyuan
    Rana, Md Sohel
    Qurashi, Muhammad Ahmed
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (01)
  • [34] Prediction of concrete porosity using machine learning
    Cao, Chong
    RESULTS IN ENGINEERING, 2023, 17
  • [35] A review on properties and multi-objective performance predictions of concrete based on machine learning models
    Ni, Bowen
    Rahman, Md Zillur
    Guo, Shuaicheng
    Zhu, Deju
    MATERIALS TODAY COMMUNICATIONS, 2025, 44
  • [36] Crop yield prediction using machine learning: An extensive and systematic literature review
    Shawon, Sarowar Morshed
    Ema, Falguny Barua
    Mahi, Asura Khanom
    Niha, Fahima Lokman
    Zubair, H. T.
    SMART AGRICULTURAL TECHNOLOGY, 2025, 10
  • [37] A Systematic Literature Review of Student' Performance Prediction Using Machine Learning Techniques
    Albreiki, Balqis
    Zaki, Nazar
    Alashwal, Hany
    EDUCATION SCIENCES, 2021, 11 (09):
  • [38] A systematic literature review of software effort prediction using machine learning methods
    Ali, Asad
    Gravino, Carmine
    JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS, 2019, 31 (10)
  • [39] A Structured Literature Review on the Application of Machine Learning in Retail
    Huetsch, Marek
    Wulfert, Tobias
    ICEIS: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS - VOL 1, 2022, : 332 - 343
  • [40] Application of machine learning and deep learning techniques on reverse vaccinology – a systematic literature review
    Alashwal, Hany
    Kochunni, Nishi Palakkal
    Hayawi, Kadhim
    Soft Computing, 2025, 29 (01) : 391 - 403