Effect of Cr content on precipitation behavior of (CoCrNi)94Ti3Al3 medium entropy alloys

被引:0
作者
Bai X. [1 ]
Fang W. [1 ,2 ]
lv J. [1 ]
Chang R. [1 ]
Yu H. [1 ]
Yan J. [1 ]
Zhang X. [1 ]
Yin F. [1 ,2 ]
机构
[1] Research Institute for Energy Equipment Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin
[2] Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin
基金
中国国家自然科学基金;
关键词
Chromium addition; Coarsening kinetics; Hardness response; High entropy alloys; Medium entropy alloys; Precipitation behavior;
D O I
10.1016/j.intermet.2021.107125
中图分类号
学科分类号
摘要
The L12 nanoparticles-enhanced alloys have huge potential in high temperature applications. In this study, the effects of Cr content on precipitation behaviors of (CoCrNi)94Ti3Al3 medium entropy alloys are investigated. The results indicate the fraction of L12 phase increases with the rising Cr content, meanwhile, the size and coarsening rate of L12 phase decrease, which suppresses the overaged degradation of hardness. The Cr concentration gradient between L12 phase and FCC phase plays an important role in the coarsening process. It is instructive to obtain exceptional nanostructure stability of L12 phase in precipitation-strengthened high entropy alloys via compositional optimization of base elements. © 2021 Elsevier Ltd
引用
收藏
相关论文
共 58 条
[1]  
Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 5, pp. 299-303, (2004)
[2]  
Cantor B., Chang I.T.H., Knight P., Vincent A.J.B., Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., 375-377, pp. 213-218, (2004)
[3]  
Miracle D., Senkov O., A critical review of high entropy alloys and related concepts, Acta Mater., 122, pp. 448-511, (2017)
[4]  
Senkov O.N., Miller J.D., Miracle D.B., Woodward C., Accelerated exploration of multi-principal element alloys with solid solution phases, Nat. Commun., 6, (2015)
[5]  
Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O., A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345, 6201, pp. 1153-1158, (2014)
[6]  
Ding J., Yu Q., Asta M., Ritchie R.O., Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys, Proc. Natl. Acad. Sci. U. S. A, 115, 36, pp. 8919-8924, (2018)
[7]  
Li Z., Zhao S., Ritchie R.O., Meyers M.A., Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Prog. Mater. Sci., 102, pp. 296-345, (2019)
[8]  
Pickering E.J., Jones N.G., High-entropy alloys: a critical assessment of their founding principles and future prospects, Int. Mater. Rev., 61, 3, pp. 183-202, (2016)
[9]  
Wu Z., Bei H., Pharr G.M., George E.P., Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater., 81, pp. 428-441, (2014)
[10]  
Lee C.P., Chang C.C., Chen Y.Y., Yeh J.W., Shih H.C., Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behavior in aqueous environments, Corrosion Sci., 50, pp. 2053-2060, (2008)