Cumulative Distribution Functions as Hysteresis Models

被引:0
作者
DE Campos, M. F. [1 ]
DE Castro, J. A. [1 ]
机构
[1] Fed Fluminense Univ UFF, Ave Trabalhadores 420, BR-27255125 Volta Redond, RJ, Brazil
关键词
hysteresis; Stoner Wohlfarth; magnetic Barkhausen noise (MBN);
D O I
10.12693/APhysPolA.146.20
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The cumulative distribution functions can be used as the basis for hysteresis models. Here it is described how, using only 3 parameters, including one representing the shape, hysteresis curves can be constructed using symmetric distribution functions. The model is useful in the interpretation of magnetic Barkhausen noise data. The model also has a clear physical meaning because it represents the distribution of coercivity inside the sample. An isotropic Stoner-Wohlfarth hysteresis was partially modelled by a three-parameter cumulative distribution function of Gaussian hysteresis for the 1st and 3rd quadrants. Asymmetric distributions will provide better hysteresis adjustment, but these are four-parameter models.
引用
收藏
页码:20 / 25
页数:120
相关论文
共 50 条
  • [41] Properties of hysteresis models relevant in electromagnetic fields numerical solvers
    Davino, D.
    Giustiniani, A.
    Visone, C.
    PHYSICA B-CONDENSED MATTER, 2008, 403 (2-3) : 414 - 417
  • [42] Thermodynamic admissibility of Bouc-Wen type hysteresis models
    Erlicher, S
    Point, N
    COMPTES RENDUS MECANIQUE, 2004, 332 (01): : 51 - 57
  • [43] On forward and inverse uncertainty quantification for models involving hysteresis operators
    Klein, Olaf
    Davino, Daniele
    Visone, Ciro
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2020, 15
  • [44] Optimal compression of generalized Prandtl-Ishlinskii hysteresis models
    Zhang, Jun
    Merced, Emmanuelle
    Sepulveda, Nelson
    Tan, Xiaobo
    AUTOMATICA, 2015, 57 : 170 - 179
  • [45] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [46] Combination of hysteresis models for accuracy improvement and stabilised electromagnetic calculations
    Skarlatos, Anastassios
    Ducharne, Benjamin
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 592
  • [47] Novel models for one-sided hysteresis of piezoelectric actuators
    Peng, J. Y.
    Chen, X. B.
    MECHATRONICS, 2012, 22 (06) : 757 - 765
  • [48] Receptor-based models with hysteresis for pattern formation in hydra
    Marciniak-Czochra, A
    MATHEMATICAL BIOSCIENCES, 2006, 199 (01) : 97 - 119
  • [49] Control-Oriented Hysteresis Models for Magnetic Electron Lenses
    van Bree, P. J.
    van Lierop, C. M. M.
    van den Bosch, P. P. J.
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (11) : 5235 - 5238
  • [50] Mathematical analysis and numerical solution of models with dynamic Preisach hysteresis
    Bermudez, A.
    Gomez, D.
    Venegas, P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367