Cumulative Distribution Functions as Hysteresis Models

被引:0
|
作者
DE Campos, M. F. [1 ]
DE Castro, J. A. [1 ]
机构
[1] Fed Fluminense Univ UFF, Ave Trabalhadores 420, BR-27255125 Volta Redond, RJ, Brazil
关键词
hysteresis; Stoner Wohlfarth; magnetic Barkhausen noise (MBN);
D O I
10.12693/APhysPolA.146.20
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The cumulative distribution functions can be used as the basis for hysteresis models. Here it is described how, using only 3 parameters, including one representing the shape, hysteresis curves can be constructed using symmetric distribution functions. The model is useful in the interpretation of magnetic Barkhausen noise data. The model also has a clear physical meaning because it represents the distribution of coercivity inside the sample. An isotropic Stoner-Wohlfarth hysteresis was partially modelled by a three-parameter cumulative distribution function of Gaussian hysteresis for the 1st and 3rd quadrants. Asymmetric distributions will provide better hysteresis adjustment, but these are four-parameter models.
引用
收藏
页码:20 / 25
页数:120
相关论文
共 50 条
  • [21] Distribution of lung tissue hysteresis during free breathing
    White, Benjamin
    Zhao, Tianyu
    Lamb, James
    Wuenschel, Sara
    Bradley, Jeffrey
    MEDICAL PHYSICS, 2013, 40 (04)
  • [22] Modeling hysteresis in piezoelectric actuators using NARMAX models
    Deng, Liang
    Tan, Yonghong
    SENSORS AND ACTUATORS A-PHYSICAL, 2009, 149 (01) : 106 - 112
  • [23] Micromagnetic models of the effect of particle shape on magnetic hysteresis
    Yu, Yongjae
    Tauxe, Lisa
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2008, 169 (1-4) : 92 - 99
  • [24] Identification and nonlinearity compensation of hysteresis using NARX models
    Abreu, Petrus E. O. G. B.
    Tavares, Lucas A.
    Teixeira, Bruno O. S.
    Aguirre, Luis A.
    NONLINEAR DYNAMICS, 2020, 102 (01) : 285 - 301
  • [25] A numerical investigation of Preisach and Jiles models for magnetic hysteresis
    Igarashi, H
    Lederer, D
    Kost, A
    Honma, T
    Nakata, T
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1998, 17 (1-3) : 357 - 363
  • [26] Identification and nonlinearity compensation of hysteresis using NARX models
    Petrus E. O. G. B. Abreu
    Lucas A. Tavares
    Bruno O. S. Teixeira
    Luis A. Aguirre
    Nonlinear Dynamics, 2020, 102 : 285 - 301
  • [27] Analysis of Noise Spectral Density for Phenomenological Models of Hysteresis
    Adedoyin, Ayodeji
    Dimian, Mihai
    Andrei, Petru
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (10) : 3934 - 3937
  • [28] The Concept of Heat and the Hysteresis Loop: The Evolution of the Losses Models
    de Campos, M. F.
    ACTA PHYSICA POLONICA A, 2024, 146 (01) : 34 - 40
  • [29] Nonlinear reptation in molecular based hysteresis models for polymers
    Banks, HT
    Medhin, NG
    Pinter, GA
    QUARTERLY OF APPLIED MATHEMATICS, 2004, 62 (04) : 767 - 779
  • [30] Exact invertible hysteresis models based on play operators
    Visone, C
    Sjöström, M
    PHYSICA B-CONDENSED MATTER, 2004, 343 (1-4) : 148 - 152