Synthesis of grid compliant substitute natural gas from a representative biogas mixture in a hybrid Ni/Ru catalysed reactor

被引:10
作者
Moioli E. [1 ,2 ]
Mutschler R. [1 ,2 ]
Borsay A. [1 ,2 ]
Calizzi M. [1 ,2 ]
Züttel A. [1 ,2 ]
机构
[1] Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion
[2] Empa Materials Science & Technology, Dübendorf
来源
Chemical Engineering Science: X | 2020年 / 8卷
关键词
Biogas upgrading; CO[!sub]2[!/sub] methanation; Multistep reactor; Optimal temperature profile;
D O I
10.1016/j.cesx.2020.100078
中图分类号
学科分类号
摘要
We demonstrate biogas upgrading towards full CO2 conversion in mild conditions in a three-step reactor system using Ru- and Ni-based catalysts. In each of the three reactor stages, the temperature is carefully controlled, thus optimizing the reaction thermodynamics and kinetics, resulting in a maximized global CO2 conversion. At ambient pressure, 92% conversion can be achieved over a commercial Ru/Al2O3 catalyst at a space velocity of 2 L/h/gcat in every stage. At 2 bar conversion is enhanced to above 99%. It is possible to substitute the Ru-based catalyst in the first stage with a cheaper Ni-based catalyst, shifting the first-stage temperature to higher values forming also CO. CO has a positive effect on the following step since CO is converted to CH4 in the CO methanation reaction. In this way, it is possible to achieve the same final conversion compared to the Ru-operated reactor system using Ni in the first reactor stage. © 2020 The Author(s)
引用
收藏
相关论文
共 30 条
  • [1] De Saint Jean M., Baurens P., Bouallou C., Couturier K., Economic assessment of a power-to-substitute-natural-gas process including high-temperature steam electrolysis, Int. J. Hydrogen Energy, 40, pp. 6487-6500, (2015)
  • [2] Burgess D.R., Thermochemical Data, in “NIST Chemistry WebBook”, (2018)
  • [3] El Sibai A., Rihko Struckmann L.K., Sundmacher K., Model-based Optimal Sabatier Reactor Design for Power-to-Gas Applications, Energy Technol., 5, pp. 911-921, (2017)
  • [4] Falbo L., Martinelli M., Visconti C.G., Lietti L., Bassano C., Deiana P., Kinetics of CO2methanation on a Ru-based catalyst at process conditions relevant for Power-to-Gas applications, Appl. Catal. B Environ., 225, pp. 354-363, (2018)
  • [5] Falbo L., Visconti C.G., Lietti L., Szanyi J., The effect of CO on CO2 methanation over Ru/Al2O3 catalysts: a combined steady-state reactivity and transient DRIFT spectroscopy study, Appl. Catal. B Environ., (2019)
  • [6] Fukuhara C., Hayakawa K., Suzuki Y., Kawasaki W., Watanabe R., A novel nickel-based structured catalyst for CO2methanation: A honeycomb-type Ni/CeO2catalyst to transform greenhouse gas into useful resources, Appl. Catal. A Gen., 532, pp. 12-18, (2017)
  • [7] Gallandat N., Mutschler R., Vernay V., Yang H., Zuttel A., Experimental performance investigation of a 2 kW methanation reactor, Sustain. Energy Fuels, 2, pp. 1101-1110, (2018)
  • [8] Garbarino G., Wang C., Cavattoni T., Finocchio E., Riani P., Flytzani-Stephanopoulos M., Busca G., A study of Ni/La-Al 2 O 3 catalysts: A competitive system for CO 2 methanation, Appl. Catal. B Environ., 248, pp. 286-297, (2019)
  • [9] Gotz M., Lefebvre J., Mors F., (2016)
  • [10] Guerra L., Rossi S., Rodrigues J., Gomes J., Puna J., Santos M.T., Methane production by a combined Sabatier reaction/water electrolysis process, J. Environ. Chem. Eng., 6, pp. 671-676, (2018)