Zames–falb multipliers for invariance

被引:15
作者
Fetzer M. [1 ]
Scherer C.W. [1 ]
机构
[1] Department of Mathematics, University of Stuttgart, Stuttgart
来源
IEEE Control Systems Letters | 2017年 / 1卷 / 02期
关键词
Lyapunov methods; Robust control; Uncertain systems;
D O I
10.1109/LCSYS.2017.2718556
中图分类号
学科分类号
摘要
This letter provides a comprehensive framework for local stability analysis of uncertain feedback interconnections within the integral quadratic constraints theory using general dynamic multipliers. It is shown how so-called hard and soft constraints can be effectively combined in order to (locally) capture the action of the uncertainty. This is illustrated for Zames–Falb multipliers, where it is proven that the subclasses of causal and anticausal multipliers can easily be factorized into hard constraints and thus individually be incorporated into the framework without introducing conservatism. © 2017 IEEE.
引用
收藏
页码:412 / 417
页数:5
相关论文
共 22 条
[1]  
Balakrishnan V., Lyapunov functionals in complex μ analysis, IEEE Trans. Autom. Control, 47, 9, pp. 1466-1479, (2002)
[2]  
Carrasco J., Maya-Gonzalez M., Lanzon A., Heath W.P., LMI searches for anticausal and noncausal rational Zames–Falb multipliers, Syst. Control Lett., 70, pp. 17-22, (2014)
[3]  
Carrasco J., Turner M.C., Heath W.P., Zames–Falb multipliers for absolute stability: From O’Shea’s contribution to convex searches, Eur. J. Control, 28, pp. 1-19, (2016)
[4]  
Fang H., Lin Z., Hu T., Analysis of linear systems in the presence of actuator saturation and L<sub>2</sub>-disturbances, Automatica, 40, 7, pp. 1229-1238, (2004)
[5]  
Fetzer M., Scherer C.W., A general integral quadratic constraints theorem with applications to a class of sampled-data systems, SIAM J. Control Optim., 54, 3, pp. 1105-1125, (2016)
[6]  
Fetzer M., Scherer C.W., Stability and performance analysis on Sobolev spaces, Proc. 55th IEEE Conf. Decis. Control, pp. 7264-7269, (2016)
[7]  
Fetzer M., Scherer C.W., Full-block multipliers for repeated, slope-restricted scalar nonlinearities, Int. J. Robust Nonlin., (2017)
[8]  
Fetzer M., Scherer C.W., Veenman J., Invariance with dynamic multipliers, IEEE Trans. Autom. Control
[9]  
Hindi H.A., Boyd S., Analysis of linear systems with saturation using convex optimization, Proc. 37th IEEE Conf. Decis. Control, pp. 903-908, (1998)
[10]  
Hu T., Lin Z., Control Systems With Actuator Saturation: Analysis and Design, (2001)