Poly (methyl methacrylate)-Sic nanocomposites prepared through in situ polymerization

被引:0
作者
Tommasinia F.J. [1 ]
da Cunha Ferreira L. [2 ]
Tienne L.G.P. [2 ]
de Oliveira Aguiar V. [2 ]
da Silva M.H.P. [1 ]
da Mota Rocha L.F. [2 ]
de Fátima Vieira Marques M. [2 ]
机构
[1] Instituto Militar de Engenharia (IME), Seção de Engenharia de Materiais, Praça General Tibúrcio, 80-Praia Vermelha, Urca, Rio de Janeiro, RJ
[2] Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária - Centro de Tecnologia/Bloco J, Rio de Janeiro, RJ
关键词
In situ polymerization; Nanocomposites; Poly(methyl methacrylate); SiC nanoparticles;
D O I
10.1590/1980-5373-mr-2018-0086
中图分类号
学科分类号
摘要
In this study, polymeric nanocomposites based on poly(methyl methacrylate) (PMMA) and silicon carbide (SiC) nanoparticles were prepared by radical mass polymerization in the presence of filler. Nanoparticles of SiC with and without surface treatment with organosilane were obtained .The nanocomposites were characterized by X-ray fluorescence (XRF), infrared spectroscopy (FTIR), thermogravimetry (TGA) and Field Emission Gun Scanning Electron Microscopy (FEG SEM) with an energy dispersive x-ray spectroscopy (EDS) detector. The produced nanocomposites showed well-dispersed SiC incorporation in the PMMA matrix. The results pointed that the surface treatment on SiC fillers was successful on enhancing the interaction between the organic matrix and the inorganic filler. © 2018 Universidade Federal de Sao Carlos. All Rights Reserved.
引用
收藏
相关论文
共 24 条
[1]  
Avila A.F., Silva Neto A., Nascimento H., Hybrid nanocomposites for mid-range ballistic protection, International Journal of Impact Engineering, 38, 8-9, pp. 669-676, (2011)
[2]  
Huang C., Cheng Q., Learning from nacre: Constructing polymer nanocomposites, Composites Science and Technology, 150, pp. 141-166, (2017)
[3]  
Yanik M.O., Yigit E.A., Akansu Y.E., Sahmetlioglu E., Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage, Energy, 138, pp. 883-889, (2017)
[4]  
Tamayo L., Azocar M., Kogan M., Riveros A., Paez M., Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces, Materials Science and Engineering: C, 69, pp. 1391-1409, (2016)
[5]  
Dufresne A., Cellulose nanomaterial reinforced polymer nanocomposites, Current Opinion in Colloid & Interface Science, 29, pp. 1-8, (2017)
[6]  
Camargo P.H.C., Satyanarayana K.G., Wypych F., Nanocomposites: synthesis, structure, properties and new application opportunities, Materials Research, 12, 1, pp. 1-39, (2009)
[7]  
Roy M., Nanocomposite films for wear resistance applications, Surface Engineering for Enhanced Performance Against Wear, pp. 45-78, (2013)
[8]  
Choudhary S., Dielectric dispersion and relaxations in (pva-peo)-zno polymer nanocomposites, Physica B: Condensed Matter, 522, pp. 48-56, (2017)
[9]  
Zare Y., Fasihi M., Rhee K.Y., Efficiency of stress transfer between polymer matrix and nanoplatelets in clay/polymer nanocomposites, Applied Clay Science, 143, pp. 265-272, (2017)
[10]  
Guo Q., Ghadiri R., Weigel T., Aumann A., Gurevich E.L., Esen C., Et al., Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites, Polymers, 6, 7, pp. 2037-2050, (2014)