共 47 条
[1]
Hoang D. T., Kang H. J., A survey on deep learning based bearing fault diagnosis, Neurocomputing, 335, pp. 327-335, (2019)
[2]
Zeng M., Zhang W., Chen Z., Group-based K-SVD denoising for bearing fault diagnosis, IEEE Sens. J, 19, pp. 6335-6343, (2019)
[3]
Yan X., She D., Xu Y., Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions, Expert Syst. Appl, 216, (2023)
[4]
Huang N. E., Shen Z., Long S. R., Wu M. C., Shih H. H., Zheng Q., Et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Math. Phys. Eng. Sci, 454, pp. 903-995, (1998)
[5]
Dragomiretskiy K., Zosso D., Variational mode decomposition, IEEE Trans. Signal Process, 62, pp. 531-544, (2013)
[6]
Xin G., Li Z., Jia L., Zhong Q., Dong H., Hamzaoui N., Et al., Fault diagnosis of wheelset bearings in high-speed trains using logarithmic short-time Fourier transform and modified self-calibrated residual network, IEEE Trans. Ind. Inf, 18, pp. 7285-7295, (2021)
[7]
Daubechies I., Ten Lectures on Wavelets, Society for industrial and applied mathematics, (1992)
[8]
Tran M. Q., Liu M. K., Tran Q. V., Nguyen T. K., Effective fault diagnosis based on wavelet and convolutional attention neural network for induction motors, IEEE Trans. Instrum. Meas, 71, pp. 1-13, (2021)
[9]
Yuan L., Lian D., Kang X., Chen Y., Zhai K., Rolling bearing fault diagnosis based on convolutional neural network and support vector machine, IEEE Access, 8, pp. 137395-137406, (2020)
[10]
Jin T., Cheng Q., Chen H., Wang S., Guo J., Chen C., Fault diagnosis of rotating machines based on EEMD-MPE and GA-BP, Int. J. Adv. Manuf. Technol, pp. 1-12, (2021)