Energy harvesting through the triboelectric nanogenerator (TENG) based on polyurethane/cellulose nanocrystal

被引:2
作者
Blancas-Flores, Jose Miguel [1 ]
Morales-Rivera, Juan [1 ]
Rocha-Ortiz, Gilberto [1 ]
Ahuactzi, Iran Fernandez Hernandez [1 ]
Cabrera-Chavarria, Jose Jesus [1 ]
Andrade-Melecio, Hugo Armando [2 ]
Astudillo-Sanchez, Pablo Daniel [1 ]
Antolin-Ceron, Victor Hugo [1 ]
机构
[1] Univ Guadalajara, Dept Ciencias Bas & Aplicadas, Tonala 45425, Mexico
[2] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Dept Ingn Quim, Guadalajara 44430, Mexico
来源
INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED | 2024年 / 13卷 / 06期
关键词
Energy harvesting; Polyurethane; cellulose nanocrystal; Nanocomposites; Triboelectric nanogenerator; THERMOPLASTIC POLYURETHANE; ELECTROSPUN NANOFIBERS; FRICTION LAYER; PERFORMANCE; POWER; OUTPUT; BLENDS; FILMS;
D O I
10.61435/ijred.2024.60664
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates how physical and mechanical properties affect the performance of triboelectric nanogenerators (TENGs). Polyurethane (PU) was prepared using two methods: (i) one-step PU (non-chain extended polyurethane) and (ii) two-step PU (chain extended polyurethane) via the prepolymer method; both types were filled with different concentrations of nanocrystalline cellulose. Mechanical properties significantly influence the deformation at the material interface that occurs during contact or friction. Key surface characteristics, including surface energy, geometry, and physicochemical properties, affect the effective contact area and potential distribution. One-step PU with 0.1 % CNC demonstrates a maximum capacitance of 29.20 pF, a voltage of 2.04 V, an electric current of 0.43 mu A and power of 0.89 mu W, representing a 74.5 % increase in power compared to the neat one-step PU, exhibits significant potential for TENG applications. Performance improvements are associated with lower concentrations of cellulose nanocrystals, enhanced hydrogen bonding, and beneficial surface energy. The observed enhancements in output are attributed to improved internal polarization from well-dispersed crystalline nanocellulose, increased crystallinity of the soft segment, and reduced charge transfer mechanisms due to amino groups in the chain extender. However, the impact of the molecular structure and conformation of polyurethanes on triboelectrification remains unclear, highlighting the need for theoretical models and experimental data. This research provides a practical approach for developing stretchable triboelectric materials with enhanced mechanical properties, emphasizing the importance of considering factors such as mechanical parameters, nanofiller content, and surface physicochemical properties to optimize TENG design.
引用
收藏
页码:1162 / 1174
页数:13
相关论文
共 80 条
[1]   High-Performance Polyurethane Nanocomposite Membranes Containing Cellulose Nanocrystals for Protein Separation [J].
Antolin-Ceron, Victor-Hugo ;
Gonzalez-Lopez, Francisco-Jesus ;
Astudillo-Sanchez, Pablo Daniel ;
Barrera-Rivera, Karla-Alejandra ;
Martinez-Richa, Antonio .
POLYMERS, 2022, 14 (04)
[2]   Biodegradable electrospun bionanocomposite fibers based on plasticized PLA-PHB blends reinforced with cellulose nanocrystals [J].
Arrieta, M. P. ;
Lopez, J. ;
Lopez, D. ;
Kenny, J. M. ;
Peponi, L. .
INDUSTRIAL CROPS AND PRODUCTS, 2016, 93 :290-301
[3]   Testing of Rubber Composites Reinforced with Carbon Nanotubes [J].
Bakosova, Dana ;
Bakosova, Alzbeta .
POLYMERS, 2022, 14 (15)
[4]   Natural Rubber-TiO2 Nanocomposite Film for Triboelectric Nanogenerator Application [J].
Bunriw, Weeraya ;
Harnchana, Viyada ;
Chanthad, Chalathorn ;
Huynh, Van Ngoc .
POLYMERS, 2021, 13 (13)
[5]   Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film [J].
Chen, Jie ;
Guo, Hengyu ;
He, Xianming ;
Liu, Guanlin ;
Xi, Yi ;
Shi, Haofei ;
Hu, Chenguo .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (01) :736-744
[6]   Synthetic scheme to increase the abrasion resistance of waterborne polyurethane-urea by controlling micro-phase separation [J].
Chen, Shu-Yi ;
Zhuang, Ren-Quan ;
Chuang, Fu-Sheng ;
Rwei, Syang-Peng .
JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (24)
[7]   A review of microphase separation of polyurethane: Characterization and applications [J].
Cheng, Bing-Xu ;
Gao, Wei-Chen ;
Ren, Xiao-Ming ;
Ouyang, Xin-Yi ;
Zhao, Yuan ;
Zhao, Hui ;
Wu, Wei ;
Huang, Chong-Xing ;
Liu, Yang ;
Liu, Xiao-Yang ;
Li, Hua-Nan ;
Li, Robert K. Y. .
POLYMER TESTING, 2022, 107
[8]   Simultaneously Harvesting Electrostatic and Mechanical Energies from Flowing Water by a Hybridized Triboelectric Nanogenerator [J].
Cheng, Gang ;
Lin, Zong-Hong ;
Du, Zu-liang ;
Wang, Zhong Lin .
ACS NANO, 2014, 8 (02) :1932-1939
[9]   Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose [J].
Cranston, Emily D. ;
Gray, Derek G. .
BIOMACROMOLECULES, 2006, 7 (09) :2522-2530
[10]   Tailoring the morphology and properties of waterborne polyurethanes by the procedure of cellulose nanocrystal incorporation [J].
de Oliveira Patricio, Patricia Santiago ;
Pereira, Iaci Miranda ;
Ferreira da Silva, Natalia Cristina ;
Ayres, Eliane ;
Pereira, Fabiano Vargas ;
Orefice, Rodrigo Lambert .
EUROPEAN POLYMER JOURNAL, 2013, 49 (12) :3761-3769