Segmentation-free x-ray energy spectrum estimation for computed tomography using dual-energy material decomposition

被引:20
|
作者
Zhao W. [1 ,2 ]
Xing L. [2 ]
Zhang Q. [1 ]
Xie Q. [1 ]
Niu T. [3 ]
机构
[1] Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan
[2] Stanford University, Department of Radiation Oncology, Stanford, CA
[3] Zhejiang University, School of Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Hangzhou
来源
Xie, Qingguo (qgxie@hust.edu.cn) | 1600年 / SPIE卷 / 04期
关键词
Computed tomography; Cone-beam computed tomography; Dual-energy computed tomography; Least square; Material decomposition; Monte Carlo; Optimization; Spectrum estimation;
D O I
10.1117/1.JMI.4.2.023506
中图分类号
学科分类号
摘要
An x-ray energy spectrum plays an essential role in computed tomography (CT) imaging and related tasks. Because of the high photon flux of clinical CT scanners, most of the spectrum estimation methods are indirect and usually suffer from various limitations. In this study, we aim to provide a segmentation-free, indirect transmission measurement-based energy spectrum estimation method using dual-energy material decomposition. The general principle of this method is to minimize the quadratic error between the polychromatic forward projection and the raw projection to calibrate a set of unknown weights, which are used to express the unknown spectrum together with a set of model spectra. The polychromatic forward projection is performed using materialspecific images, which are obtained using dual-energy material decomposition. The algorithm was evaluated using numerical simulations, experimental phantom data, and realistic patient data. The results show that the estimated spectrum matches the reference spectrum quite well and the method is robust. Extensive studies suggest that the method provides an accurate estimate of the CT spectrum without dedicated physical phantom and prolonged workflow. This paper may be attractive for CT dose calculation, artifacts reduction, polychromatic image reconstruction, and other spectrum-involved CT applications. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE).
引用
收藏
相关论文
共 50 条
  • [31] Optimal Contrast of Computed Tomography Portal Venography Using Dual-Energy Computed Tomography
    Wang, Qi
    Shi, Gaofeng
    Liu, Xiang
    Wu, Runze
    Wang, Shijie
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2013, 37 (02) : 142 - 148
  • [32] Investigation of dual-energy X-ray photon counting using a cadmium telluride detector with dual-energy selection electronics
    Sato, Eiichi
    Kosuge, Yoshiyuki
    Yamanome, Hayato
    Mikata, Aldko
    Miura, Tatsuya
    Oda, Yasuyuki
    Ishii, Tomotaka
    Hagiwara, Osahiko
    Matsukiyo, Hiroshi
    Watanabe, Manabu
    Kusachi, Shinya
    RADIATION PHYSICS AND CHEMISTRY, 2017, 130 : 385 - 390
  • [33] Imaging of nanoparticles with dual-energy computed tomography
    Ducote, J. L.
    Alivov, Y.
    Molloi, S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (07) : 2031 - 2044
  • [34] Dual-energy Computed Tomography Applications in Uroradiology
    Park, Jong
    Chandarana, Hersh
    Macari, Michael
    Megibow, Alec J.
    CURRENT UROLOGY REPORTS, 2012, 13 (01) : 55 - 62
  • [35] Dual-energy computed tomography: what is it useful for?
    Delgado Sanchez-Gracian, C.
    Martinez Rodriguez, C.
    Trinidad Lopez, C.
    RADIOLOGIA, 2013, 55 (04): : 346 - 352
  • [36] Dual-Energy Computed Tomography in Cardiac Imaging
    Boettcher, Benjamin
    Zsarnoczay, Emese
    Varga-Szemes, Akos
    Schoepf, Uwe Joseph
    Meinel, Felix G.
    van Assen, Marly
    De Cecco, Carlo N.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2023, 61 (06) : 995 - 1009
  • [37] Dual-energy Computed Tomography Imaging of the Aorta
    Vlahos, Ioannis
    Godoy, Myrna C. B.
    Naidich, David P.
    JOURNAL OF THORACIC IMAGING, 2010, 25 (04) : 289 - 300
  • [38] Dual-energy Computed Tomography Applications in Uroradiology
    Jong Park
    Hersh Chandarana
    Michael Macari
    Alec J. Megibow
    Current Urology Reports, 2012, 13 : 55 - 62
  • [39] Image domain dual material decomposition for dual-energy CT using butterfly network
    Zhang, Wenkun
    Zhang, Hanming
    Wang, Linyuan
    Wang, Xiaohui
    Hu, Xiuhua
    Cai, Ailong
    Li, Lei
    Niu, Tianye
    Yan, Bin
    MEDICAL PHYSICS, 2019, 46 (05) : 2037 - 2051
  • [40] Cardiac Applications of Dual-Energy Computed Tomography
    Lempel, Matthew
    Frishman, William H.
    CARDIOLOGY IN REVIEW, 2019, 27 (04) : 208 - 210