Segmentation-free x-ray energy spectrum estimation for computed tomography using dual-energy material decomposition

被引:20
|
作者
Zhao W. [1 ,2 ]
Xing L. [2 ]
Zhang Q. [1 ]
Xie Q. [1 ]
Niu T. [3 ]
机构
[1] Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan
[2] Stanford University, Department of Radiation Oncology, Stanford, CA
[3] Zhejiang University, School of Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Hangzhou
来源
Xie, Qingguo (qgxie@hust.edu.cn) | 1600年 / SPIE卷 / 04期
关键词
Computed tomography; Cone-beam computed tomography; Dual-energy computed tomography; Least square; Material decomposition; Monte Carlo; Optimization; Spectrum estimation;
D O I
10.1117/1.JMI.4.2.023506
中图分类号
学科分类号
摘要
An x-ray energy spectrum plays an essential role in computed tomography (CT) imaging and related tasks. Because of the high photon flux of clinical CT scanners, most of the spectrum estimation methods are indirect and usually suffer from various limitations. In this study, we aim to provide a segmentation-free, indirect transmission measurement-based energy spectrum estimation method using dual-energy material decomposition. The general principle of this method is to minimize the quadratic error between the polychromatic forward projection and the raw projection to calibrate a set of unknown weights, which are used to express the unknown spectrum together with a set of model spectra. The polychromatic forward projection is performed using materialspecific images, which are obtained using dual-energy material decomposition. The algorithm was evaluated using numerical simulations, experimental phantom data, and realistic patient data. The results show that the estimated spectrum matches the reference spectrum quite well and the method is robust. Extensive studies suggest that the method provides an accurate estimate of the CT spectrum without dedicated physical phantom and prolonged workflow. This paper may be attractive for CT dose calculation, artifacts reduction, polychromatic image reconstruction, and other spectrum-involved CT applications. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE).
引用
收藏
相关论文
共 50 条
  • [1] A dual-energy material decomposition method for high-energy X-ray cargo inspection
    Jiseoc Lee
    Yunjeong Lee
    Seungryong Cho
    Byung-Cheol Lee
    Journal of the Korean Physical Society, 2012, 61 : 821 - 824
  • [2] Dual-energy computed tomography imaging with megavoltage and kilovoltage X-ray spectra
    Jadick, Giavanna
    Schlafly, Geneva
    La Riviere, Patrick J.
    JOURNAL OF MEDICAL IMAGING, 2024, 11 (02)
  • [3] A generalized simultaneous algebraic reconstruction technique (GSART) for dual-energy X-ray computed tomography
    Lee, Donghyeon
    Yun, Sungho
    Soh, Jeongtae
    Lim, Sunho
    Kim, Hyoyi
    Cho, Seungryong
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (03) : 549 - 566
  • [4] Dynamic material decomposition method for MeV dual-energy X-ray CT
    Zhao, Tiao
    Li, Liang
    Chen, Zhiqiang
    APPLIED RADIATION AND ISOTOPES, 2018, 140 : 55 - 62
  • [5] A dual-energy material decomposition method for high-energy X-ray cargo inspection
    Lee, Jiseoc
    Lee, Yunjeong
    Cho, Seungryong
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 61 (05) : 821 - 824
  • [6] K-edge eliminated material decomposition method for dual-energy X-ray CT
    Zhao, Tiao
    Li, Liang
    Chen, Zhiqiang
    APPLIED RADIATION AND ISOTOPES, 2017, 127 : 231 - 236
  • [7] Dual-Energy Computed Tomography Material Decomposition Network Based on Mamba and Channel Attention
    Ge, Tianhao
    Kong, Fanning
    Shi, Zaifeng
    Jin, Yichao
    Cao, Qingjie
    LASER & OPTOELECTRONICS PROGRESS, 2025, 62 (02)
  • [8] CT Dual-energy Decomposition into X-ray Signatures ρe and Ze
    Martz, Harry E., Jr.
    Seetho, Isaac M.
    Champley, Kyle M.
    Smith, Jerel A.
    Azevedo, Stephen G.
    ANOMALY DETECTION AND IMAGING WITH X-RAYS (ADIX), 2016, 9847
  • [9] Stabilizing dual-energy x-ray computed tomography reconstructions using patch-based regularization
    Tracey, Brian H.
    Miller, Eric L.
    INVERSE PROBLEMS, 2015, 31 (10)
  • [10] Efficient material decomposition method for dual-energy X-ray cargo inspection system
    Lee, Donghyeon
    Lee, Jiseoc
    Min, Jonghwan
    Lee, Byungcheol
    Lee, Byeongno
    Oh, Kyungmin
    Kim, Jaehyun
    Cho, Seungryong
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 884 : 105 - 112