Quantified active learning Kriging model for structural reliability analysis

被引:1
|
作者
Prentzas, Ioannis [1 ]
Fragiadakis, Michalis [1 ]
机构
[1] Natl Tech Univ Athens, Sch Civil Engn, Lab Earthquake Engn, Iroon Polythechniou, Zografou, Athens 15773, Greece
关键词
Reliability; Active learning; Kriging; Adaptive refinement; Surrogate models; Most probable misclassification function; HIGH DIMENSIONS;
D O I
10.1016/j.probengmech.2024.103699
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A quantified active learning Kriging-based (qAK) methodology for structural reliability analysis is presented. The proposed approach is based on an updated probability density function (PDF), which is dominant in the vicinity of the limit-state surface. This PDF is created using weights based on an improved learning function called the most probable misclassification function. This function is used as a metric for efficiently updating the Kriging model, as it symmetrically quantifies the uncertainty of candidate points in terms of the model's accuracy. The proposed approach accurately approximates the points that lie on the limit-state surface. Moreover, a probabilistic-based stopping criterion is proposed. The new support points are selected using the weighted K-means algorithm and the sample from the updated PDF. Thus, the method does not require solving an optimization problem or using a sampling algorithm. The proposed qAK methods are more reliable and robust than previous implementations of the Kriging method for structural reliability assessment. The proposed approach is presented within the framework of standard reliability methods, i.e., the Monte Carlo and the Subset Simulation methods. The efficiency of the proposed qAK methods is demonstrated with the aid of six case studies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Structural fatigue reliability analysis based on active learning Kriging model
    Qian, Hua-Ming
    Wei, Jing
    Huang, Hong-Zhong
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 172
  • [2] An active learning Kriging model with approximating parallel strategy for structural reliability analysis
    Meng, Yuan
    Zhang, Dequan
    Shi, Baojun
    Wang, Dapeng
    Wang, Fang
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 247
  • [3] An Efficient Subset Simulation based on the Active Learning Kriging model for Structural Reliability Analysis
    Li, Jingkui
    Wang, Bomin
    2020 3RD WORLD CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT MANUFACTURING (WCMEIM 2020), 2020, : 561 - 565
  • [4] Structural reliability analysis under evidence theory using the active learning kriging model
    Yang, Xufeng
    Liu, Yongshou
    Ma, Panke
    ENGINEERING OPTIMIZATION, 2017, 49 (11) : 1922 - 1938
  • [5] An active learning Kriging model with adaptive parameters for reliability analysis
    Xu, Huanwei
    Zhang, Wei
    Zhou, Naixun
    Xiao, Lu
    Zhang, Jingtian
    ENGINEERING WITH COMPUTERS, 2023, 39 (05) : 3251 - 3268
  • [6] An active learning Kriging model with adaptive parameters for reliability analysis
    Huanwei Xu
    Wei Zhang
    Naixun Zhou
    Lu Xiao
    Jingtian Zhang
    Engineering with Computers, 2023, 39 : 3251 - 3268
  • [7] A novel kriging based active learning method for structural reliability analysis
    Hong Linxiong
    Li Huacong
    Peng Kai
    Xiao Hongliang
    Journal of Mechanical Science and Technology, 2020, 34 : 1545 - 1556
  • [8] A novel kriging based active learning method for structural reliability analysis
    Hong Linxiong
    Li Huacong
    Peng Kai
    Xiao Hongliang
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (04) : 1545 - 1556
  • [9] An active-learning method based on multi-fidelity Kriging model for structural reliability analysis
    Yi, Jiaxiang
    Wu, Fangliang
    Zhou, Qi
    Cheng, Yuansheng
    Ling, Hao
    Liu, Jun
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 63 (01) : 173 - 195
  • [10] An active-learning method based on multi-fidelity Kriging model for structural reliability analysis
    Jiaxiang Yi
    Fangliang Wu
    Qi Zhou
    Yuansheng Cheng
    Hao Ling
    Jun Liu
    Structural and Multidisciplinary Optimization, 2021, 63 : 173 - 195