Model identification of piecewise affine (PWA) systems based on fuzzy cluster

被引:1
作者
Pan, Tian-Hong [1 ,2 ]
Li, Shao-Yuan [1 ]
机构
[1] Institute of Automation, Shanghai Jiaotong University
[2] School of Electrical and Information Engineering, Jiangsu University
来源
Zidonghua Xuebao/Acta Automatica Sinica | 2007年 / 33卷 / 03期
关键词
Fuzzy taxonomy; G-K fuzzy cluster; Piecewise affine system; Support vector machines;
D O I
10.1360/aas-007-0327
中图分类号
学科分类号
摘要
For a class of discrete-time hybrid system in the piecewise affine form, its model identification problem is equivalent to the problems of classification of the cluster data of the system, the optimized classification of boundary and linear regression. Using improved G-K fuzzy cluster algorithm to solve the numerical problems in iterated processes, the optimal cluster data can be obtained. The number of sub-models can be estimated from multi-performance indexes. In each cluster, the parameters of sub-model are obtained by the weighted least squares method. Two adjacent regions were achieved with the nearest distance among the cluster centers. The boundary hyper-plane can be estimated by using a soft margin support vector machine. Simulation results show good performances of this effective technique.
引用
收藏
页码:327 / 330
页数:3
相关论文
共 11 条
[1]  
Juloski A.Lj., Heemels W.P.M.H., Ferrari-Trecate G., Data-based hybrid modelling of the component placement process in pick-and-place machines, Control Engineering Practice, 12, 10, pp. 1241-1252, (2004)
[2]  
Fantuzzi C., Simani S., Beghelli S., Rovatti R., Identification of piecewise affine models in noisy environment, International Journal of Control, 75, 18, pp. 1472-1485, (2002)
[3]  
Ferrari-Trecate G., Muselli M., Liberati D., Morari M., A clustering technique for the identification of piecewise affine systems, Automatica, 39, 2, pp. 205-217, (2003)
[4]  
Heemels W.P.M.H., Schutter B.D., Bemporad A., Equivalence of hybrid dynamical models, Automatica, 37, 7, pp. 1085-1091, (2001)
[5]  
Amaldi E., Mattavelli M., The MIN PFS problem and piece-wise linear model estimation, Discrete Applied Mathematics, 118, 1, pp. 115-143, (2002)
[6]  
Roll J., Bemporad A., Ljung L., Identification of piecewise affine systems via mixed-integer programming, Automatica, 40, 1, pp. 37-50, (2004)
[7]  
Nakada H., Takaba K., Katayama T., Identification of piecewise affine systems based on statistical clustering technique, Automatica, 41, 13, pp. 905-913, (2005)
[8]  
Yang M.S., Wu K.L., Unsupervised possibilistic clustering, Pattern Recognition, 39, 5, pp. 5-21, (2006)
[9]  
Babuska R., van der Veen P.J., Kaymak U., Improved covariance estimation for Gustafson-Kessel clustering, Proceedings of IEEE International Conference on Fuzzy Systems, pp. 1081-1085, (2002)
[10]  
Li N., Li S.-Y., Xi Y.-G., Modeling of pH neutralization processes using fuzzy satisfactory clustering, Control and Decision, 17, 2, pp. 143-147, (2003)