An extended AKNS eigenvalue problem and its affiliated integrable Hamiltonian hierarchies

被引:2
|
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
基金
中国国家自然科学基金;
关键词
Matrix eigenvalue problem; Lax pair; Zero curvature equation; Integrable model; Bi-Hamiltonian formulation; NONLINEAR EVOLUTION-EQUATIONS; COUPLINGS;
D O I
10.1016/j.chaos.2024.115580
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to study an extended 4 x 4 AKNS eigenvalue problem and construct its affiliated integrable hierarchies of bi-Hamiltonian models over the real field. The Lax pair framework serves as the fundamental tool, ensuring integrability through bi-Hamiltonian structures with hereditary recursion operators. We compute illustrative examples of lower-order equations to demonstrate the affiliated integrable hierarchies.
引用
收藏
页数:6
相关论文
共 30 条
  • [1] COMMUTING INTEGRABLE MODELS GENERATED FROM A GENERALIZED AKNS EIGENVALUE PROBLEM
    Ma, Wen-Xiu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, : 994 - 1005
  • [2] AKNS TYPE REDUCED INTEGRABLE HIERARCHIES WITH HAMILTONIAN FORMULATIONS
    Ma, Wen-xiu
    ROMANIAN JOURNAL OF PHYSICS, 2023, 68 (9-10):
  • [3] AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials
    Ma, Wen-Xiu
    APPLIED MATHEMATICS LETTERS, 2023, 145
  • [4] TWO FAMILIES GENERALIZATION OF AKNS HIERARCHIES AND THEIR HAMILTONIAN STRUCTURES
    Wang, Yunhu
    Liang, Xiangqian
    Wang, Hui
    MODERN PHYSICS LETTERS B, 2010, 24 (08): : 791 - 805
  • [5] Higher-Order Matrix Spectral Problems and Their Integrable Hamiltonian Hierarchies
    Chen, Shou-Ting
    Ma, Wen-Xiu
    MATHEMATICS, 2023, 11 (08)
  • [6] The Hamiltonian structure of the expanding integrable model of the generalized AKNS hierarchy
    Feng, Binlu
    Han, Bo
    CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 271 - 276
  • [7] Novel integrable Hamiltonian hierarchies with six potentials
    Ma, Wenxiu
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (06) : 2498 - 2508
  • [8] A nonisospectral integrable model of AKNS hierarchy and KN hierarchy, as well as its extended system
    Wang, Haifeng
    Zhang, Yufeng
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (10)
  • [9] A FOUR-BY-FOUR MATRIX EIGENVALUE PROBLEM, RELATED HIERARCHY OF LAX INTEGRABLE EQUATIONS AND THEIR HAMILTONIAN STRUCTURES
    Xu, Xi-Xiang
    Yang, Hong-Xiang
    Cao, Wei-Li
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (23): : 4027 - 4040
  • [10] Multi-component super integrable Hamiltonian hierarchies
    Wang, Haifeng
    Zhang, Yufeng
    Li, Chuanzhong
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 456