Lightweight and Efficient YOLOv8 With Residual Attention Mechanism for Precise Leukemia Detection and Classification

被引:0
|
作者
Prakash, Kavya Dasaramoole [1 ]
Khan, Junaid [2 ,3 ]
Kim, Kyungsup [1 ,2 ]
机构
[1] Chungnam Natl Univ, Dept Comp Engn, Daejeon 34134, South Korea
[2] Chungnam Natl Univ, Dept Environm & IT Engn, Daejeon 34134, South Korea
[3] Samsung Heavy Ind, Autonomous Ship Res Ctr, Daejeon 34051, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Accuracy; Blood; Computer architecture; Feature extraction; YOLO; Microprocessors; Deep learning; Support vector machines; Convolutional neural networks; Real-time systems; Cancer; DWSCNN; object detection; leukemia detection; RCBAM; YOLOv8;
D O I
10.1109/ACCESS.2024.3484933
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Leukemia, defined by the abnormal growth of white blood cells, poses diagnostic difficulties due to its diverse symptoms and swift progression. Timely and precise detection is vital for effective treatment and better patient outcomes. This paper introduces a novel lightweight YOLOv8 model, integrated with a residual attention mechanism, aimed at improving leukemia detection and classification. Enhancements to the YOLOv8n architecture include Depthwise Separable Convolution (DWSCNN) and Residual Convolution Block Attention Mechanism (RCBAM) layers, which strengthen feature extraction and contextual information gathering. Trained on a comprehensive dataset of blood cell images annotated for various leukemia stages: benign, malignant-early, malignant-pre, and malignant-pro, the model employs noteworthy results, achieving the mAP of 98.4%, F1-score of 96.2%, and an inference speed of 3.5 milliseconds, significantly surpassing traditional YOLOv8 variants and other leading techniques. The proposed model not only improves diagnostic precision but also minimizes computational requirements, making it suitable for use in clinical settings, especially where resources are limited. By enabling early and precise detection of leukemia, this model holds promise for advancing treatment strategies and improving patient outcomes, paving the way for future innovations in medical imaging and automated disease diagnosis.
引用
收藏
页码:159395 / 159413
页数:19
相关论文
共 50 条
  • [41] Empowering Military Vehicle Detection and Classification with YOLOv8 Model
    Ba Alawi, Abdulfattah E.
    Mohammed, Hussein M. A.
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [42] THDet: A Lightweight and Efficient Traffic Helmet Object Detector based on YOLOv8
    Li, Yi
    Xu, Huiying
    Zhu, Xinzhong
    Huang, Xiao
    Li, Hongbo
    DIGITAL SIGNAL PROCESSING, 2024, 155
  • [43] Real-Time Banana Ripeness Detection and Classification using YOLOv8
    Baldovino, Renann G.
    Lim, Raphael Antoine U.
    Salvador, Patrick Reylie R.
    Tiamzon, Euri Andre P.
    9TH INTERNATIONAL CONFERENCE ON MECHATRONICS ENGINEERING, ICOM 2024, 2024, : 219 - 223
  • [44] Road Object Detection in Foggy Complex Scenes Based on Improved YOLOv8
    Cheng, Long
    Zhang, Dan
    Zheng, Yan
    IEEE ACCESS, 2024, 12 : 107420 - 107430
  • [45] Wheat Powdery Mildew Detection with YOLOv8 Object Detection Model
    Onler, Eray
    Koycu, Nagehan Desen
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [46] Bolt Loosening Detection Method Based on Improved YOLOv8 and Image Matching
    Jiang, Peihe
    Geng, Yuhang
    Sang, Zhongqi
    Lin, Lifeng
    IEEE ACCESS, 2025, 13 : 1133 - 1146
  • [47] Enhanced YOLOv8 with attention mechanisms for accurate detection of colorectal polyps
    Wang, Shuangyuan
    Lin, Shengmao
    Sun, Fujia
    Li, Xiaobo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [48] Improved YOLOv8 Model for a Comprehensive Approach to Object Detection and Distance Estimation
    Khow, Zu Jun
    Tan, Yi-Fei
    Karim, Hezerul Abdul
    Rashid, Hairul Azhar Abdul
    IEEE ACCESS, 2024, 12 : 63754 - 63767
  • [49] Accurate Detection of Brain Tumor Lesions From Medical Images Based on Improved YOLOv8 Algorithm
    Yao, Qingan
    Zhuang, Dongwei
    Feng, Yuncong
    Wang, Yougang
    Liu, Jiapeng
    IEEE ACCESS, 2024, 12 : 144260 - 144279
  • [50] Optimized YOLOV8: An efficient underwater litter detection using deep learning
    Rehman, Faiza
    Rehman, Mariam
    Anjum, Maria
    Hussain, Afzaal
    AIN SHAMS ENGINEERING JOURNAL, 2025, 16 (01)