Lightweight and Efficient YOLOv8 With Residual Attention Mechanism for Precise Leukemia Detection and Classification

被引:0
|
作者
Prakash, Kavya Dasaramoole [1 ]
Khan, Junaid [2 ,3 ]
Kim, Kyungsup [1 ,2 ]
机构
[1] Chungnam Natl Univ, Dept Comp Engn, Daejeon 34134, South Korea
[2] Chungnam Natl Univ, Dept Environm & IT Engn, Daejeon 34134, South Korea
[3] Samsung Heavy Ind, Autonomous Ship Res Ctr, Daejeon 34051, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Accuracy; Blood; Computer architecture; Feature extraction; YOLO; Microprocessors; Deep learning; Support vector machines; Convolutional neural networks; Real-time systems; Cancer; DWSCNN; object detection; leukemia detection; RCBAM; YOLOv8;
D O I
10.1109/ACCESS.2024.3484933
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Leukemia, defined by the abnormal growth of white blood cells, poses diagnostic difficulties due to its diverse symptoms and swift progression. Timely and precise detection is vital for effective treatment and better patient outcomes. This paper introduces a novel lightweight YOLOv8 model, integrated with a residual attention mechanism, aimed at improving leukemia detection and classification. Enhancements to the YOLOv8n architecture include Depthwise Separable Convolution (DWSCNN) and Residual Convolution Block Attention Mechanism (RCBAM) layers, which strengthen feature extraction and contextual information gathering. Trained on a comprehensive dataset of blood cell images annotated for various leukemia stages: benign, malignant-early, malignant-pre, and malignant-pro, the model employs noteworthy results, achieving the mAP of 98.4%, F1-score of 96.2%, and an inference speed of 3.5 milliseconds, significantly surpassing traditional YOLOv8 variants and other leading techniques. The proposed model not only improves diagnostic precision but also minimizes computational requirements, making it suitable for use in clinical settings, especially where resources are limited. By enabling early and precise detection of leukemia, this model holds promise for advancing treatment strategies and improving patient outcomes, paving the way for future innovations in medical imaging and automated disease diagnosis.
引用
收藏
页码:159395 / 159413
页数:19
相关论文
共 50 条
  • [21] Vehicle detection and classification using an ensemble of EfficientDet and YOLOv8
    Lv, Caixia
    Mittal, Usha
    Madaan, Vishu
    Agrawal, Prateek
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [22] Textile Defect Detection Algorithm Based on the Improved YOLOv8
    Song, Wenfei
    Lang, Du
    Zhang, Jiahui
    Zheng, Meilian
    Li, Xiaoming
    IEEE ACCESS, 2025, 13 : 11217 - 11231
  • [23] A Lightweight YOLOv8 Model for Apple Leaf Disease Detection
    Gao, Lijun
    Zhao, Xing
    Yue, Xishen
    Yue, Yawei
    Wang, Xiaoqiang
    Wu, Huanhuan
    Zhang, Xuedong
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [24] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242
  • [25] YOLOv8-RD: High-Robust Pine Wilt Disease Detection Method Based on Residual Fuzzy YOLOv8
    Yuan, Junchao
    Wang, Lina
    Wang, Tingting
    Bashir, Ali Kashif
    Al Dabel, Maryam M.
    Wang, Jiaxing
    Feng, Hailin
    Fang, Kai
    Wang, Wei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 385 - 397
  • [26] Application of Mask R-CNN and YOLOv8 Algorithms for Concrete Crack Detection
    Choi, Yongjin
    Bae, Byongkyu
    Han, Taek Hee
    Ahn, Jaehun
    IEEE ACCESS, 2024, 12 : 165314 - 165321
  • [27] YOLOv8-FDD: A Real-Time Vehicle Detection Method Based on Improved YOLOv8
    Liu, Xiaojia
    Wang, Yipeng
    Yu, Dexin
    Yuan, Zimin
    IEEE ACCESS, 2024, 12 : 136280 - 136296
  • [28] An Insulator Location and Defect Detection Method Based on Improved YOLOv8
    Li, Zhongsheng
    Jiang, Chenda
    Li, Zhongliang
    IEEE ACCESS, 2024, 12 : 106781 - 106792
  • [29] Research on Fire Smoke Detection Algorithm Based on Improved YOLOv8
    Zhang, Tianxin
    Wang, Fuwei
    Wang, Weimin
    Zhao, Qihao
    Ning, Weijun
    Wu, Haodong
    IEEE ACCESS, 2024, 12 : 117354 - 117362
  • [30] DCE-YOLOv8: Lightweight and Accurate Object Detection for Drone Vision
    An, Jinsu
    Lee, Dong Hee
    Putro, Muhamad Dwisnanto
    Kim, Byeong Woo
    IEEE ACCESS, 2024, 12 : 170898 - 170912