BeiDou-3 orbit and clock quality of the IGS Multi-GNSS Pilot Project

被引:27
作者
Steigenberger P. [1 ]
Deng Z. [2 ]
Guo J. [3 ]
Prange L. [4 ]
Song S. [5 ]
Montenbruck O. [1 ]
机构
[1] German Space Operations Center (GSOC), Deutsches Zentrum für Luft-und Raumfahrt (DLR), Münchner Straße 21, Weßling
[2] Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum, Telegrafenberg, Potsdam
[3] GNSS Research Center, Wuhan University, No. 129 Luoyu Road, Wuhan
[4] Astronomical Institute, University of Bern, Sidlerstrasse 5, Bern
[5] Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai
基金
中国国家自然科学基金;
关键词
BDS; Clock stability; GNSS; MGEX; Orbit accuracy; PPP;
D O I
10.1016/j.asr.2022.08.058
中图分类号
学科分类号
摘要
Within the Multi-GNSS Pilot Project (MGEX) of the International GNSS Service (IGS), precise orbit and clock products for the BeiDou-3 global navigation satellite system (BDS-3) are routinely generated by a total of five analysis centers. The processing standards and specific properties of the individual products are reviewed and the BDS-3 orbit and clock product performance is assessed through direct inter-comparison, satellite laser ranging (SLR) residuals, clock stability analysis, and precise point positioning solutions. The orbit consistency evaluated by the signal-in-space range error is on the level of 4–8 cm for the medium Earth orbit satellites whereas SLR residuals have RMS values between 3 and 9 cm. The clock analysis reveals sytematic effects related to the elevation of the Sun above the orbital plane for all ACs pointing to deficiencies in solar radiation pressure modeling. Nevertheless, precise point positioning with the BDS-3 MGEX orbit and clock products results in 3D RMS values between 7 and 8 mm. © 2022 COSPAR
引用
收藏
页码:355 / 368
页数:13
相关论文
共 66 条
  • [31] Mendes V.B., Pavlis E.C., High-accuracy zenith delay prediction at optical wavelengths, Geophys. Res. Lett., 31, (2004)
  • [32] Montenbruck O., Steigenberger P., Hauschild A., Multi-GNSS signal-in-space range error assessment – methodology and results, Adv. Space Res., 61, 12, pp. 3020-3038, (2018)
  • [33] Montenbruck O., Steigenberger P., Hugentobler U., Enhanced solar radiation pressure modeling for Galileo satellites, J. Geod., 89, 3, pp. 283-297, (2015)
  • [34] Montenbruck O., Steigenberger P., Prange L., Deng Z., Zhao Q., Perosanz F., Romero I., Noll C., Sturze A., Weber G., Schmid R., MacLeod K., Schaer S., The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) – achievements, prospects and challenges, Adv. Space Res., 59, 7, pp. 1671-1697, (2017)
  • [35] Noll C.E., The Crustal Dynamics Data Information System: A resource to support scientific analysis using space geodesy, Adv. Space Res., 45, 12, pp. 1421-1440, (2010)
  • [36] Pearlman M.R., Degnan J.J., Bosworth J.M., The International Laser Ranging Service, Adv. Space Res., 30, 2, pp. 125-143, (2002)
  • [37] Prange L., Villiger A., Sidorov D., Schaer S., Beutler G., Dach R., Jaggi A., Overview of CODE's MGEX solution with the focus on Galileo, Adv. Space Res., 66, 12, pp. 2786-2798, (2020)
  • [38] Qin W., Ge Y., Wei P., Dai P., Yang X., Assessment of the BDS-3 on-board clocks and their impact on the PPP time transfer performance, Measurement, 153, (2020)
  • [39] Rebischung P., Schmid R., (2016)
  • [40] Ruan R., Jia X., Feng L., Zhu J., Huyan Z., Li J., Wei Z., Orbit determination and time synchronization for BDS-3 satellites with raw inter-satellite link ranging observations, Sat. Nav., 1, (2020)