Neuroevolution machine learning potential to study high temperature deformation of entropy-stabilized oxide MgNiCoCuZnO5

被引:2
作者
Timalsina, B. [1 ]
Nguyen, H. G. [2 ]
Esfarjani, K. [3 ,4 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22903 USA
[2] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22903 USA
[3] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22903 USA
[4] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
LATTICE THERMAL-CONDUCTIVITY; MOLECULAR-DYNAMICS; DISTORTION; GENERATION;
D O I
10.1063/5.0224282
中图分类号
O59 [应用物理学];
学科分类号
摘要
Entropy stabilized oxide of MgNiCoCuZnO5, also known as J14, is a material of active research interest due to a high degree of lattice distortion and tunability. Lattice distortion in J14 plays a crucial role in understanding the elastic constants and lattice thermal conductivity within the single-phase crystal. In this work, a neuroevolution machine learning potential (NEP) is developed for J14, and its accuracy has been compared to density functional theory calculations. The training errors for energy, force, and virial are 5.60 meV/atom, 97.90 meV/& Aring;, and 45.67 meV/atom, respectively. Employing NEP potential, lattice distortion, and elastic constants is studied up to 900 K. In agreement with experimental findings, this study shows that the average lattice distortion of oxygen atoms is relatively higher than that of all transition metals in entropy-stabilized oxide. The observed distortion saturation in the J14 arises from the competing effects of minimum site distortion, which increases with increasing temperature due to enhanced thermal vibrations, and maximum site distortion, which decreases with increasing temperature. Furthermore, a series of molecular dynamics simulations up to 900 K are performed to study the stress-strain behavior. The elastic constants, bulk modulus, and ultimate tensile strength obtained from these simulations indicate a linear decrease in these properties with temperature, as J14 becomes softer owing to thermal effects. Finally, to gain some insight into thermal transport in these materials, with the so-developed NEP potential, and using non-equilibrium molecular dynamics simulations, we study the lattice thermal conductivity ( kappa) of the ternary compound MgNiO2 as a function of temperature. It is found that kappa decreases from 4.25 W m( -1) K -1 at room temperature to 3.5 W m( -1) K -1 at 900 K. This suppression is attributed to the stronger scattering of low-frequency modes at higher temperatures.
引用
收藏
页数:16
相关论文
共 79 条
[1]   Phase stability and distortion in high-entropy oxides [J].
Anand, G. ;
Wynn, Alex P. ;
Handley, Christopher M. ;
Freeman, Colin L. .
ACTA MATERIALIA, 2018, 146 :119-125
[2]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[3]   E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials [J].
Batzner, Simon ;
Musaelian, Albert ;
Sun, Lixin ;
Geiger, Mario ;
Mailoa, Jonathan P. ;
Kornbluth, Mordechai ;
Molinari, Nicola ;
Smidt, Tess E. ;
Kozinsky, Boris .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[5]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[6]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[7]   Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides [J].
Berardan, D. ;
Meena, A. K. ;
Franger, S. ;
Herrero, C. ;
Dragoe, N. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 704 :693-700
[8]   Colossal dielectric constant in high entropy oxides [J].
Berardan, David ;
Franger, Sylvain ;
Dragoe, Diana ;
Meena, Arun Kumar ;
Dragoe, Nita .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04) :328-333
[9]   FINITE ELASTIC STRAIN OF CUBIC CRYSTALS [J].
BIRCH, F .
PHYSICAL REVIEW, 1947, 71 (11) :809-824
[10]   Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides [J].
Braun, Jeffrey L. ;
Rost, Christina M. ;
Lim, Mina ;
Giri, Ashutosh ;
Olson, David H. ;
Kotsonis, George N. ;
Stan, Gheorghe ;
Brenner, Donald W. ;
Maria, Jon-Paul ;
Hopkins, Patrick E. .
ADVANCED MATERIALS, 2018, 30 (51)