Avalanche breakdown in multicrystalline solar cells due to preferred phosphorous diffusion at extended defects

被引:17
作者
Bauer, Jan [1 ]
Lausch, Dominik [2 ]
Blumtritt, Horst [1 ]
Zakharov, Nikolai [1 ]
Breitenstein, Otwin [1 ]
机构
[1] Max Planck Institute of Microstructure Physics, 06120 Halle
[2] Fraunhofer Center for Silicon Photovoltaics CSP, Halle
来源
Bauer, J. (jbauer@mpi-halle.mpg.de) | 1600年 / John Wiley and Sons Ltd卷 / 21期
关键词
alkaline texture; avalanche breakdown; breakdown voltage; multicrystalline solar cells; p-n junction;
D O I
10.1002/pip.2220
中图分类号
学科分类号
摘要
Multicrystalline solar cells break down strongly at reverse voltages well below the theoretical limit. Previous explanations were based on assuming a constant depth of the junction below the surface. In this work, preferred phosphorous diffusion at special line defects in grain boundaries is shown to lead to spikes in the p-n junctions even below flat surfaces. The curvature radii of the spherical p-n junction bending are measured by electron beam-induced current to be in the range of 300-500 nm, leading to the observed type III avalanche breakdown voltages. Copyright © 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1444 / 1453
页数:9
相关论文
共 30 条
  • [1] Sze S.M., Gibbons G., Effect of junction curvature on breakdown voltage in semiconductors, Solid State Electronics, 9, pp. 831-845, (1966)
  • [2] Goetzberger A., McDonald B., Haitz R.H., Scarlett R.M., Avalanche effects in silicon p-n junctions. II. Structurally perfect junctions, Journal of Applied Physics, 34, pp. 1591-1600, (1963)
  • [3] Bauer J., Wagner J.-M., Lotnyk A., Blumtritt H., Lim B., Schmidt J., Breitenstein O., Hot spots in multicrystalline silicon solar cells: Avalanche breakdown due to etch pits, Physica Status Solidi Rapid Research Letters, 3, pp. 40-42, (2009)
  • [4] Breitenstein O., Bauer J., Bothe K., Kwapil W., Lausch D., Rau U., Schmidt J., Schneemann M., Schubert M.C., Wagner J.-M., Warta W., Understanding junction breakdown in multicrystalline solar cells, Journal of Applied Physics, 109, (2011)
  • [5] Lausch D., Petter K., Von Wenckstern H., Grundmann M., Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells, Physica Status Solidi Rapid Research Letters, 3, pp. 70-72, (2009)
  • [6] Simo A., Martinuzzi S., Hot spots and heavily dislocated regions in multicrystalline silicon cells, Conference Record of the IEEE Photovoltaic Specialists Conference, 1, pp. 800-805, (1990)
  • [7] Bishop J.W., Microplasma breakdown and hot-spots in silicon solar cells, Solar Cells, 26, 4, pp. 335-349, (1989)
  • [8] Wagner M., Grundig-Wendrock B., Palinginis P., Knopf C., Shunts, diode breakdown and high reverse currents in multicrystalline silicon solar cells, Proceedings of the 24th EUPVSEC, Hamburg, Germany, pp. 2028-2031, (2009)
  • [9] Kwapil W., Wagner M., Schubert M.C., Warta W., High net doping concentration responsible for critical diode breakdown behavior of upgraded metallurgical grade multicrystalline silicon, Journal of Applied Physics, 108, (2010)
  • [10] Nievendick J., Kwapil W., Rentsch J., Influence of trench structures induced by texturization on the breakdown voltage of multicrystalline silicon solar cells, IEEE Proceedings of the 37th PVSC, Seattle, WA, USA