Some numerical quadrature for singular integral of the altimetry gravity in the innermost area

被引:0
|
作者
Zong J. [1 ]
Li H. [1 ]
Ji B. [1 ]
Ouyang Y. [2 ]
机构
[1] Department of Navigation, Naval University of Engineering, Wuhan
[2] Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou
来源
Cehui Xuebao/Acta Geodaetica et Cartographica Sinica | 2021年 / 50卷 / 10期
基金
中国国家自然科学基金;
关键词
Inverse Stokes formula; Inverse Vening-Meinesz formula; Non-singular transformation; Numerical quadrature formula; Satellite altimetry;
D O I
10.11947/j.AGCS.2021.20200564
中图分类号
学科分类号
摘要
In order to simplify the calculation process and improve the calculation efficiency of inverse Stokes formula method and the inverse Vening-Meinesz formula method to invert the gravity anomaly, the numerical quadrature method is adopted. A new study on the investigation of singular integral of inverse Stokes formula and inverse Vening-Meinesz formula based on Simpson formula and Cotes formula is done and the formula of gravity anomaly in innermost area are derived systematically. The analysis based on the theoretical model of geoidal height and vertical deflections shows that the formula can directly use the geoid height and vertical deviation at the grid node to calculate the gravity anomaly which have simple form, high precision and high calculation efficiency. These research results can provide theoretical basis for high-precision satellite altimetry inversion of gravity anomalies. © 2021, Surveying and Mapping Press. All right reserved.
引用
收藏
页码:1308 / 1319
页数:11
相关论文
共 26 条
  • [1] YAO Yibin, YANG Yuanxi, SUN Heping, Et al., Geodesy discipline: progress and perspective, Acta Geodaetica et Cartographica Sinica, 49, 10, pp. 1243-1251, (2020)
  • [2] PENG Fuqing, CHEN Shuangjun, JIN Qunfeng, Influence of altimetry errors on marine geopotential recovery, Acta Geodaetica et Cartographica Sinica, 43, 4, pp. 337-340, (2014)
  • [3] CHENG Pengfei, WEN Hanjiang, LIU Huanling, Et al., Research situation and future development of satellite geodesy, Geomatics and Information Science of Wuhan University, 44, 1, pp. 48-54, (2019)
  • [4] LI Jiancheng, NING Jinsheng, CHEN Junyong, Et al., Geoid determination in China sea areas, Acta Geodaetica et Cartographica Sinica, 32, 2, pp. 114-119, (2003)
  • [5] ZHU C C, GAO J Y, GAO J Y, Et al., Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea: SCSGA V1.0, Journal of Geodesy, 94, (2020)
  • [6] PRANDI P, PHILIPPS S, PIGNOT V., SARAL/AltiKa global statistical assessment and cross-calibration with Jason-2[J], Marine Geodesy, 38, pp. 297-312, (2015)
  • [7] ANDERSON O, KUNDSEN P., Global marine gravity field from the ERS-1 and geodetic mission altimetry, Journal Geophysics Research, 103, pp. 8129-8137, (1988)
  • [8] WAN X Y, RICHARD F A, JIN S G, Et al., Vertical deflections and gravity disturbances derived from HY-2A data[J], Remote Sensing, 12, 14, (2020)
  • [9] XU Houze, WANG Haiying, LU Yang, Et al., Geoid undulations and gravity anomalies from T/P and ERS-1 altimeter data in the China Sea and vicinity, Chinese Journal of Geophysics, 4, pp. 3-5, (1999)
  • [10] ZHANG Shengjun, LI Jiancheng, KONG Xiangxue, Inversion of global marine gravity anomalies with vertical deflection method deduced from laplace equation, Acta Geodaetica et Cartographica Sinica, 49, 4, pp. 452-460, (2020)