AN LDLT TRUST-REGION QUASI-NEWTON METHOD

被引:0
|
作者
Brust, Johannes J. [1 ,2 ]
Gill, Philip E. [3 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85281 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 05期
关键词
unconstrained minimization; LDLT factorization; quasi-Newton methods; conjugate gradient method; trust-region methods; line-search methods; LIMITED-MEMORY; TRUST; OPTIMIZATION; ALGORITHM;
D O I
10.1137/23M1623380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For quasi-Newton methods in unconstrained minimization, it is valuable to develop methods that are robust, i.e., methods that converge on a large number of problems. Trust-region algorithms are often regarded to be more robust than line-search methods; however, because trust-region methods are computationally more expensive, the most popular quasi-Newton implementations use line-search methods. To fill this gap, we develop a trust-region method that updates an LDLT factorization, scales quadratically with the size of the problem, and is competitive with a conventional line-search method.
引用
收藏
页码:A3330 / A3351
页数:22
相关论文
共 50 条
  • [21] A subspace implementation of quasi-Newton trust region methods for unconstrained optimization
    Wang, Zhou-Hong
    Yuan, Ya-Xiang
    NUMERISCHE MATHEMATIK, 2006, 104 (02) : 241 - 269
  • [22] A fractional programming algorithm based on conic quasi-Newton trust region method for unconstrained minimization
    Wang, Fusheng
    Zhang, Kecun
    Tan, Xiaolong
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (02) : 1061 - 1067
  • [23] Correction of nonmonotone trust region algorithm based on a modified diagonal regularized quasi-Newton method
    Mirzaei, Seyed Hamzeh
    Ashrafi, Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [24] Using the Newton Trust-Region Method to Localize in WLAN Environment
    Chan, Eddie C. L.
    Baciu, George
    Mak, S. C.
    2009 IEEE INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS, 2009, : 363 - 369
  • [25] QUASI-NEWTON METHOD WITH NO DERIVATIVES
    GREENSTADT, J
    MATHEMATICS OF COMPUTATION, 1972, 26 (117) : 145 - +
  • [26] Quasi-newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martínez, A.
    Putti, M.
    Electronic Transactions on Numerical Analysis, 2006, 23 : 76 - 87
  • [27] Quasi-Newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martinez, A.
    Putti, M.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 23 : 76 - 87
  • [28] A smoothing trust-region Newton-CG method for minimax problem
    Ye, Feng
    Liu, Hongwei
    Zhou, Shuisheng
    Liu, Sanyang
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (02) : 581 - 589
  • [29] A Riemannian Newton trust-region method for fitting Gaussian mixture models
    Lena Sembach
    Jan Pablo Burgard
    Volker Schulz
    Statistics and Computing, 2022, 32
  • [30] A Riemannian Newton trust-region method for fitting Gaussian mixture models
    Sembach, Lena
    Burgard, Jan Pablo
    Schulz, Volker
    STATISTICS AND COMPUTING, 2022, 32 (01)