AN LDLT TRUST-REGION QUASI-NEWTON METHOD

被引:0
作者
Brust, Johannes J. [1 ,2 ]
Gill, Philip E. [3 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85281 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
unconstrained minimization; LDLT factorization; quasi-Newton methods; conjugate gradient method; trust-region methods; line-search methods; LIMITED-MEMORY; TRUST; OPTIMIZATION; ALGORITHM;
D O I
10.1137/23M1623380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For quasi-Newton methods in unconstrained minimization, it is valuable to develop methods that are robust, i.e., methods that converge on a large number of problems. Trust-region algorithms are often regarded to be more robust than line-search methods; however, because trust-region methods are computationally more expensive, the most popular quasi-Newton implementations use line-search methods. To fill this gap, we develop a trust-region method that updates an LDLT factorization, scales quadratically with the size of the problem, and is competitive with a conventional line-search method.
引用
收藏
页码:A3330 / A3351
页数:22
相关论文
共 49 条
  • [1] ACHDOU Y, Frontiers Appl. Math., V30, P243, DOI [10.1137/1.9780898717495.ch8, DOI 10.1137/1.9780898717495.CH8]
  • [2] [Anonymous], 1970, Numerical methods for nonlinear algebraic equations
  • [3] [Anonymous], 2023, MATLAB OPTIMIZATION TOOLBOx
  • [4] CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT
    BONGARTZ, I
    CONN, AR
    GOULD, N
    TOINT, PL
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01): : 123 - 160
  • [5] Optimization Methods for Large-Scale Machine Learning
    Bottou, Leon
    Curtis, Frank E.
    Nocedal, Jorge
    [J]. SIAM REVIEW, 2018, 60 (02) : 223 - 311
  • [6] Broyden C. G., 1970, Journal of the Institute of Mathematics and Its Applications, V6, P222
  • [7] Broyden C. G., 1973, Journal of the Institute of Mathematics and Its Applications, V12, P223
  • [8] BRUST J. J., 2018, Ph.D. thesis
  • [9] On solving L-SR1 trust-region subproblems
    Brust, Johannes
    Erway, Jennifer B.
    Marcia, Roummel F.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 66 (02) : 245 - 266
  • [10] LARGE-SCALE OPTIMIZATION WITH LINEAR EQUALITY CONSTRAINTS USING REDUCED COMPACT REPRESENTATION\ast
    Brust, Johannes J.
    Marcia, Roummel F.
    Petra, Cosmin G.
    Saunders, Michael A.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01) : A103 - A127