Image Segmentation of Printed Fabrics with Hierarchical Improved Markov Random Field in the Wavelet Domain

被引:0
作者
Jing, Junfeng [1 ]
Li, Qi [1 ]
Li, Pengfei [1 ]
Zhang, Hongwei [1 ]
Zhang, Lei [1 ]
机构
[1] Xi An Polytech Univ, Jinhua Rd 19th, Xian 710048, Shaanxi, Peoples R China
来源
JOURNAL OF ENGINEERED FIBERS AND FABRICS | 2016年 / 11卷 / 03期
关键词
Image segmentation; Feature field modeling; Label field modeling; Parameter estimation; GRAPH CUTS; MRF; HYBRID;
D O I
10.1177/155892501601100305
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
An improved MRF algorithm-hierarchical Gauss Markov Random Field model in the wavelet domain is presented for fabric image segmentation in this paper, which obtains the relation of interscale dependency from the feature field modeling and label field modeling. The GaussMarkov random field modeling is usually adopted to feature field modeling. The label field modeling employs the interscale causal MRF model and the intrascale noncausal MRF model. After that, parameter estimation is the essential section in the interscale, enhancing modeling capabilities of the pixels partial dependency. Sequential maximum a posterior criterion is applied to achieve the results of image segmentation. Comparisons with other hybrid schemes, results are indicated that performance of the presented algorithm is effective and accurate, in terms of classification accuracy and kappa coefficient, for patterned fabric images.
引用
收藏
页码:17 / 32
页数:16
相关论文
共 22 条
[1]   Dynamic Hybrid Algorithms for MAP Inference in Discrete MRFs [J].
Alahari, Karteek ;
Kohli, Pushmeet ;
Torr, Philip H. S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (10) :1846-1857
[2]  
Alexandre Bousse, 2012, PHYS MED BIOL, V57, P681
[3]  
Anthony Lee, 2012, STAT APPL GENETICS M, V11
[4]   A wavelet-based Markov random field segmentation model in segmenting microarray experiments [J].
Athanasiadis, Emmanouil ;
Cavouras, Dionisis ;
Kostopoulos, Spyros ;
Glotsos, Dimitris ;
Kalatzis, Ioannis ;
Nikiforidis, George .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :307-315
[5]   Graph cuts and efficient N-D image segmentation [J].
Boykov, Yuri ;
Funka-Lea, Gareth .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 70 (02) :109-131
[6]  
Chavez Ricardo Omar, 2013, ISRN MACHINE VISION
[7]   Segmentation of textured images using a multiresolution Gaussian autoregressive model [J].
Comer, ML ;
Delp, EJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (03) :408-420
[8]   Conditional-mean least-squares fitting of Gaussian Markov random fields to Gaussian fields [J].
Cressie, Noel ;
Verzelen, Nicolas .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (05) :2794-2807
[9]   A system for textile design patterns retrieval. Part I: Design patterns extraction by adaptive and efficient color image segmentation method [J].
Lachkar, A. ;
Benslimane, R. ;
D'Orazio, L. ;
Martuscelli, E. .
JOURNAL OF THE TEXTILE INSTITUTE, 2006, 97 (04) :301-312
[10]   A study of Gaussian mixture models of color and texture features for image classification and segmentation [J].
Permuter, H ;
Francos, J ;
Jermyn, I .
PATTERN RECOGNITION, 2006, 39 (04) :695-706